
Flowgorithm Uygulaması
ile Algoritma Geliştirme

DOÇ. DR. ÖMER UYSAL & UZMAN GÜRKAN GÜREŞCİ

FLOWGORITHM UYGULAMASI ILE ALGORITMA GELIŞTIRME
Doç. Dr. Ömer Uysal, Uzman Gürkan Güreşci

Yayınevi Grubu Genel Başkanı: Yusuf Ziya Aydoğan (yza@egitimyayinevi.com)
Genel Yayın Yönetmeni: Yusuf Yavuz (yusufyavuz@egitimyayinevi.com)
Sayfa Tasarımı: Kübra Konca Nam
Kapak Tasarımı: Eğitim Yayınevi Tasarım Birimi

T.C. Kültür ve Turizm Bakanlığı
Yayıncı Sertifika No: 76780

E-ISBN: 978-625-385-621-2
1. Baskı, Aralık 2025

Kütüphane Kimlik Kartı
FLOWGORITHM UYGULAMASI ILE ALGORITMA GELIŞTIRME
Doç. Dr. Ömer Uysal, Uzman Gürkan Güreşci
184 s., 210x297 mm
Kaynakça var, dizin yok.
E-ISBN: 978-625-385-621-2

Copyright © Bu kitabın Türkiye’deki her türlü yayın hakkı Eğitim Yayınevi’ne aittir. Bütün
hakları saklıdır. Kitabın tamamı veya bir kısmı 5846 sayılı yasanın hükümlerine göre
kitabı yayımlayan firmanın ve yazarlarının önceden izni olmadan elektronik/mekanik
yolla, fotokopi yoluyla ya da herhangi bir kayıt sistemi ile çoğaltılamaz, yayımlanamaz.

Yayınevi Türkiye Ofis: İstanbul: Eğitim Yayınevi Tic. Ltd. Şti., Atakent mah.
Yasemen sok. No: 4/B, Ümraniye, İstanbul, Türkiye

Konya: Eğitim Yayınevi Tic. Ltd. Şti., Fevzi Çakmak Mah. 10721 Sok. B Blok,
No: 16/B, Safakent, Karatay, Konya, Türkiye
+90 332 351 92 85, +90 533 151 50 42
bilgi@egitimyayinevi.com

Yayınevi Amerika Ofis: New York: Egitim Publishing Group, Inc.
P.O. Box 768/Armonk, New York, 10504-0768, United States of America
americaoffice@egitimyayinevi.com

Lojistik ve Sevkiyat Merkezi: Kitapmatik Lojistik ve Sevkiyat Merkezi, Fevzi Çakmak Mah.
10721 Sok. B Blok, No: 16/B, Safakent, Karatay, Konya, Türkiye
sevkiyat@egitimyayinevi.com

Kitabevi Şubesi: Eğitim Kitabevi, Şükran mah. Rampalı 121, Meram, Konya, Türkiye
+90 332 499 90 00
bilgi@egitimkitabevi.com

İnternet Satış: www.kitapmatik.com.tr
bilgi@kitapmatik.com.tr

Flowgorithm Uygulaması ile Algoritma Geliştirme

2

Teşekkür	Notu	

Gürkan Güreşci: Bu kitabın ortaya çıkma sürecinde bana yol gösteren, sabrımı ve
motivasyonumu her daim tazeleyen hocam Doç. Dr. Ömer Uysal’a; bu çalışma için
zamanlarından fedakârlık ettiğim eşim Gizem’e ve oğullarım Selim ile Alper’e
teşekkür ederim.

Ömer Uysal: Bu kitabın ortaya çıkma sürecinde gösterdiği gayret ve azim için
Gürkan Güreşci Hocama; yoğun akademik süreçlerde zaman zaman kendilerini
ihmal ettiğim Rüstem Babama, Kadriye Anneme, eşim Zeliha’ya, kızım Zehra’ya
ve oğlum Enes’e teşekkür ederim.

Geliştirdikleri algoritmalar ile insanlık adına katma değer üretmeye çalışan herkese
teşekkür ederiz.

Flowgorithm Uygulaması ile Algoritma Geliştirme 3

Önsöz	

Flowgorithm Uygulaması ile Algoritma Geliştirme isimli bu kitap, programlama
bariyerlerini aşmak ve algoritma mantığını görselleştirerek öğrenmeyi sağlamak
amacıyla kaleme alınmıştır. Kitabımız, El-Harezmi'den günümüze uzanan
algoritma tarihini modern eğitim araçlarıyla buluşturmaktadır. Flowgorithm’in
sunduğu görsel arayüz sayesinde, karmaşık kod satırları arasında kaybolmadan; akış
şemaları ile problemleri parçalara ayırmayı, algoritma geliştirmeyi ve sistematik
düşünmeyi öğreneceksiniz.

Bu eserde sadece şekillerin nasıl çizileceğini değil; bir problemin nasıl algoritmaya
dönüştüğünü adım adım deneyimleyeceksiniz. Üstelik kurduğunuz mantığın C#,
Python, Java gibi popüler dillerdeki karşılıklarını görerek, teorik bilginizi
uygulamaya dönüştürme fırsatı bulacaksınız. Kitapta, Flowgorithm yazılımı en ince
ayrıntısına kadar ele alınmış; temel kavramlardan başlayarak koşullu ifadeler,
döngüler, diziler, fonksiyonlar ve daha ileri algoritma yapılarına kadar sistematik
bir yapı izlenmiştir.

Kitap ile uyumlu olarak Flowgorithm ile hazırlanan örnek algoritmalar da açık
erişiminize sunulmaktadır. Çünkü örnek algoritmalar incelenerek yeni algoritmalar
daha kolay geliştirilebilmektedir. Özellikle Flowgorithm ile işlemlerin adım adım
takibi, algoritma geliştirme ve hata ayıklama süreçlerini ciddi anlamda
görselleştirmekte ve somutlaştırmaktadır. Flowgorithm uygulama örnekleri şu
adres üzerinden siz değerli okurlarımız ile
paylaşılmaktadır: https://drive.google.com/file/d/1ZYg9mJL4yRGCPBen36HBO
TPzVaJi7pKT/view?usp=drive_link

Bu kitapla hangi fırsatlar sunulmaktadır?

Bilgi İşlemsel Düşünme (BİD): Problemleri parçalara ayırma, örüntüleri tanıma,
soyutlama, algoritmik düşünme gibi 21. yüzyıl temel becerilerini
güçlendireceksiniz.

Görsel Öğrenme: Flowgorithm’in dokunmatik arayüzü ile algoritmaları sadece
okuyarak değil, akış şemaları çizerek ve uygulayarak öğreneceksiniz.

Hata Ayıklama ve Analiz: Kurduğunuz algoritmayı adım adım çalıştırarak
değişken değerlerini görmeyi, mantık hatalarını tespit etmeyi ve bir uzman gibi
analiz yapmayı deneyimleyeceksiniz.

https://drive.google.com/file/d/1ZYg9mJL4yRGCPBen36HBOTPzVaJi7pKT/view?usp=drive_link
https://drive.google.com/file/d/1ZYg9mJL4yRGCPBen36HBOTPzVaJi7pKT/view?usp=drive_link

Flowgorithm Uygulaması ile Algoritma Geliştirme

4

Çoklu Dil Desteği: Geliştirdiğiniz algoritmanın Python, C#, Java, C++ gibi
dillerdeki kod karşılığını tek tıkla görecek, algoritmadan gerçek kodlamaya
zahmetsizce geçiş yapacaksınız.

Geleceğin dünyasını kodlayacak olan öğrencilere, onlara rehberlik eden değerli
eğitimcilere ve algoritma geliştirme becerisini kazanmak isteyen tüm okurlarımıza,
bu yolculukta sağlam bir temel ve güvenilir bir yol arkadaşı olması dileğiyle.

 Ömer UYSAL ve Gürkan GÜREŞCİ

Aralık 2025, Bursa

Flowgorithm Uygulaması ile Algoritma Geliştirme 5

İçindekiler	Tablosu	

Teşekkür Notu .. 2

Önsöz .. 3

Tablolar Listesi .. 8

Şekiller Listesi ... 8

1 Bölüm .. 13

1.1 BİLGİ İŞLEMSEL DÜŞÜNCE ... 13

1.1.1 Eğitim Sistemindeki Önemi ve Uygulama Alanları .. 14

1.1.2 BİD ve Bilgi ve İletişim Teknolojileri (BİT) Yeterlikleri .. 15

1.2 ALGORİTMA ... 16

1.2.1 Algoritma Nedir? ... 16

1.2.2 Algoritmanın Tarihi ... 17

1.3 Algoritmadan Programlamaya Aşamalar .. 17

1.4 Algoritmalarda Kullanılan Terimler ... 23

1.4.1 Tanımlayıcı .. 23

1.4.2 Değişken .. 23

1.4.3 Atama .. 23

1.4.4 Sayaç ... 23

1.4.5 Döngü .. 24

1.5 Algoritmada Kullanılan Operatörler .. 24

1.5.1 Matematiksel İşlem Operatörleri .. 25

1.5.2 Karşılaştırma Operatörleri ... 25

1.5.3 Mantık Operatörleri .. 26

1.5.4 Metin Operatörü ... 26

1.6 Algoritma Örnekleri ... 26

2 Bölüm .. 29

2.1 Flowgorithm İndirme Linki .. 29

2.2 Program Hakkında ... 29

2.3 Programın Özellikleri ve İşlevleri ... 30

2.3.1 Arayüz ... 30

2.3.2 Çoklu Dil Desteği ... 30

2.3.3 Araç Çubuğu .. 31

2.3.4 Menü Çubuğu .. 33

2.3.5 Dosya menüsü ... 33

2.3.6 Düzenle Menüsü ... 34

Flowgorithm Uygulaması ile Algoritma Geliştirme

6

2.3.7 Görünüm Menüsü ... 35

2.3.8 Program Menüsü .. 36

2.3.9 Araçlar Menüsü ... 37

2.3.10 Yardım Menüsü .. 38

2.4 Programlamada Değişken Kavramı ... 39

2.4.1 Değişken Türleri .. 40

2.4.2 Değişkenlere İsim Verme Kuralları .. 40

2.4.3 Değişken Atama ve Değer Verme ... 42

2.5 Değişken Değer Bilgisini Kullanıcıdan Alma(Input) .. 47

2.6 Operatörler .. 51

2.7 İçsel Fonksiyonlar .. 52

2.8 Yerleşik Sabitler ... 54

2.9 Değişken Uygulaması Örneği (Dairenin Çevre ve Alanını Hesaplama) 55

3 Bölüm .. 56

3.1 Kontrol Yapıları (If) .. 56

3.1.1 If Uygulaması Örneği (Öğrenicinin karne notuna göre başarı durumu) 58

3.1.2 Vücut Kitle Indexi Hesaplayan Program .. 59

3.2 For Döngüsü .. 59

3.2.1 Örnek for döngüsü uygulaması (1’den n’ye kadar olan sayıları toplayan
program) ... 62

3.2.2 Örnek For Uygulaması 2(Mükemmel Sayıyı Bulan Program) 63

3.3 While Döngüsü .. 64

3.3.1 While Döngüsü Örneği(Asal Çarpanları Bulma Uygulaması) 67

3.3.2 While Döngüsü Örneği (Ebob bulma) .. 70

3.4 DO Döngüsü .. 71

4 Bölüm .. 74

4.1 DİZİLER ... 74

4.1.1 Dizi Örneği 1 (Rakamları dizinin elemanı yapan program) 76

4.1.2 Dizi Örneği 2 (Kullanıcıdan Alınan 5 farkı sayıyı sıralayan program) 77

4.1.3 Dizi Örneği 3 (Kullanıcının Girdiği En Büyük Sayıyı Bulan Program) 80

5 Bölüm .. 81

5.1 Fonksiyonlar .. 81

5.1.1 Fonksiyon kullanımı örneği (Bankamatik Uygulaması) 87

6 Bölüm .. 94

6.1 Grafik Şekilleri ... 94

6.1.1 Şekli Temizle ... 94

Flowgorithm Uygulaması ile Algoritma Geliştirme 7

6.1.2 İleri .. 94

6.1.3 Ev .. 94

6.1.4 Dönüş .. 95

6.1.5 Çokgen Çizme Uygulaması .. 95

6.1.6 Merdiven çizme uygulaması ... 99

6.1.7 Fraktal Çizdirme Uygulaması ... 101

7 Bölüm .. 104

7.1 Dosya I/O Şekilleri ... 104

7.1.1 Açık .. 104

7.1.2 Kapalı .. 104

7.1.3 Okuma ... 104

7.1.4 Yazma .. 105

7.1.5 Dosya Okuma Örneği .. 105

7.1.6 1’den 10’a kadar olan sayıların karelerini alıp txt dosyasına yazdıran program
 108

8 Bölüm .. 111

8.1 Farklı Yazılım Dillerinde Çıktı Alma .. 111

8.2 Genel Örnek Uygulamalar ... 112

8.2.1 ATM Simülasyonu ... 112

8.2.2 Verilen şemanın Python çıktısı .. 120

8.2.3 XOX Oyununun Akış Şeması .. 122

8.2.4 Oyunun Python Çıktısı .. 140

8.2.5 Ocak Saati Uygulaması .. 144

8.2.6 Adam Asmaca Oyunu .. 155

8.2.7 Programın Python Çıktısı ... 165

8.2.8 Bir Belgede Kelime Arama Uygulaması ... 169

8.2.9 Verilen programın Python Çıktısı ... 180

9 Kaynakça ... 182

Kısa Özgeçmiş .. 183

Flowgorithm Uygulaması ile Algoritma Geliştirme

8

Tablolar	Listesi	

Tablo 1-1 Bilgi işlemsel düşünme tanımları .. 16
Tablo 1-2 Akış şemalarında kullanılan semboller (Vatansever, 2017) 20
Tablo 1-3 Matematiksel işlem operatörleri (Aydoğdu, 2020) 25
Tablo 1-4 Karşılaştırma operatörleri (Aydoğdu, 2020) ... 25
Tablo 1-5 Mantık operatörleri (Şefik & Urhan, 2023) .. 26
Tablo 2-1Programın Üst Sekmeleri ... 32
Tablo 2-2 Tablo sekmelerinin açıklamaları (Atzori, 2022) ... 34
Tablo 2-3 Düzenle menüsü sekmelerin açıklamaları (Atzori, 2022) 34
Tablo 2-4 Görünüm menüsü sekmelerin açıklamaları (Atzori, 2022) 35
Tablo 2-5 Program menüsü sekmelerin açıklamaları (Atzori, 2022) 36
Tablo 2-6 Araçlar menüsü sekmelerin açıklamaları (Atzori, 2022) 38
Tablo 2-7 Yardım menüsü sekmelerin açıklamaları (Atzori, 2022) 39
Tablo 2-8 Değişkenin yapısını veren tablo (Atzori, 2022) .. 41
Tablo 2-9 Değişken olarak kullanılamayan kelimeler (Atzori, 2022) 41
Tablo 2-10 Kullanılabilecek operatörler (Atzori, 2022) .. 52
Tablo 2-11 Matematik işlem örnekleri (Atzori, 2022) .. 52
Tablo 2-12 Matematik formülleri (Atzori, 2022) .. 53
Tablo 2-13 String tipi değişken fonksiyonları (Atzori, 2022) 53
Tablo 2-14 Dönüşüm fonksiyonları (Atzori, 2022) ... 54
Tablo 2-15 Sabitler (Atzori, 2022) .. 54

Şekiller	Listesi	

Şekil 1-1 Bilgi İşlemsel Düşünmenin Boyutları .. 13
Şekil 1-2 Problemin Anlaşılması ve Tanımlanması .. 17
Şekil 1-3 Girdi ve Çıktıların Belirlenmesi ... 17
Şekil 1-4 Çözüm Yöntemlerinin Belirlenmesi .. 18
Şekil 1-5 Algoritmanın Geliştirilmesi ... 19
Şekil 1-6 İki Sayının Toplamı Algoritması ... 19
Şekil 1-7 Algoritmadan Programlamaya 7 Temel Aşama ... 22
Şekil 1-8 Doğrusal, Mantıksal ve Döngüsel Algoritma Yapıları 27
Şekil 1-9 Doğrusal Algoritma Akış Diyagramı ... 27
Şekil 1-10 Mantıksal Algoritma Akış Diyagramı .. 28
Şekil 1-11 Döngüsel Algoritma Akış Diyagramı .. 28
Şekil 2-1 Programın Üst Sekmeleri ... 30
Şekil 2-2 Desteklenen Diller .. 30
Şekil 2-3 Dil Değiştirme Sekmesi ... 31
Şekil 2-4 Dil Değiştir Ekranı ... 31
Şekil 2-5 Dosya menüsündeki sekmelere ulaşma .. 33
Şekil 2-6 Düzenle menüsündeki sekmelere ulaşma ... 34
Şekil 2-7 Görünüm menüsündeki sekmelere ulaşma ... 35
Şekil 2-8 Program menüsündeki sekmelere ulaşma .. 36
Şekil 2-9 Değişken değerlerini anlık izleme .. 37
Şekil 2-10 Araçlar menüsündeki sekmelere ulaşma .. 37
Şekil 2-11 Yardım menüsündeki sekmelere ulaşma .. 38

Flowgorithm Uygulaması ile Algoritma Geliştirme 9

Şekil 2-12 Değişkenin Yapısı .. 39
Şekil 2-13 Şekiller menüsü için tıklanması gereken ok ... 42
Şekil 2-14 Akış diyagramına eklenebilecek semboller ... 42
Şekil 2-15 Değişken atama .. 43
Şekil 2-16 Değişkenin isim ve türünü belirleme ekranı .. 43
Şekil 2-17 Değişken eklendikten sonra akış şemasındaki görünüm 43
Şekil 2-18 Akış şemasına Atama şekli eklendikten sonra oluşan görünüm 44
Şekil 2-19 Atama ekranında değişkenin değerini değiştirme görüntüsü 44
Şekil 2-20 Değişkenin değeri değiştikten sonra oluşan görüntü 45
Şekil 2-21 Akış şemasına çıktı şekli eklenenince oluşan görüntü 45
Şekil 2-22 Çıktı ekranına yazdırmak istenilen bilginin girildiği kısım 46
Şekil 2-23 Bilgi girildikten sonra akış şemasının görünümü 46
Şekil 2-24 Program çalıştırıldığında oluşan çıktı .. 47
Şekil 2-25 Değişkenlerin tanımlama görüntüsü .. 48
Şekil 2-26 Çıktı şeklinin eklenmesi ... 48
Şekil 2-27 Girdi şeklinin eklenmesi .. 49
Şekil 2-28 Girdi özelliklerinin belirlenmesi .. 49
Şekil 2-29 Girdi girişinden sonra akış şemasındaki görüntü 50
Şekil 2-30 Çıktı şekillerinin eklenmesi ... 50
Şekil 2-31 Program çalıştırıldığında oluşan görüntü ... 51
Şekil 2-32 Program çalıştığında oluşan çıktı ... 55
Şekil 3-1 Kontrol yapısı (Atzori, 2022) ... 56
Şekil 3-2 Tek-çift sayıların ayrımını yapan algoritma ... 57
Şekil 3-3 Program çalıştırıldığında oluşan çıktı .. 57
Şekil 3-4 Başarı durumunu belirleyen algoritma ... 58
Şekil 3-5 For döngü şeması (Atzori, 2022) ... 59
Şekil 3-6 For döngüsünün şemaya eklenmesi ... 60
Şekil 3-7 Döngünün özelliklerinin belirlenmesi .. 60
Şekil 3-8 Döngü eklenince oluşan akış şeması .. 61
Şekil 3-9 Program çalıştırıldığına oluşan çıktı .. 61
Şekil 3-10 Belirli bir sayıya kadar girilen sayıların toplamını veren algoritma 62
Şekil 3-11 while döngü şeması (Atzori, 2022) .. 64
Şekil 3-12 While döngüsünün şemaya eklenmesi ... 65
Şekil 3-13 Döngü özelliklerinin belirlenmesi .. 65
Şekil 3-14 Döngü eklendikten sonra oluşan görüntü ... 66
Şekil 3-15 Program çalıştırıldıktan sonra oluşan görüntü ... 67
Şekil 3-16 Asal çarpan algoritması 1. kısım .. 67
Şekil 3-17 Asal çarpan algoritması 2. kısım .. 68
Şekil 3-18 Asal çarpan algoritması çıktı .. 69
Şekil 3-19 Do döngü şeması (Atzori, 2022) .. 71
Şekil 3-20 Do döngüsü algoritma örneği ... 73
Şekil 4-1 Dizi Tanımlama Ekranı .. 74
Şekil 4-2 Tanımlanmış dizinin akış şemasındaki görünümü 75
Şekil 4-3 Dizinin belirli bir elamanının değerini belirleme ... 75
Şekil 4-4 Dizi şekilleri eklendikten sonra oluşan akış şemasının görüntüsü 76
Şekil 4-5 Rakamları dizinin elemanı yapan akış şeması ... 76
Şekil 4-6 Beş farklı sayıyı sıralayan algoritma örneği ... 78
Şekil 4-7 Programın çıktısı .. 79
Şekil 5-1 Fonksiyon uygulaması Akış şeması 1. kısım ... 81
Şekil 5-2 Fonksiyon uygulaması Akış şeması 2. kısım ... 81

Flowgorithm Uygulaması ile Algoritma Geliştirme

10

Şekil 5-3 Fonksiyon uygulaması Akış şeması 3. Kısım .. 82
Şekil 5-4 Fonksiyon uygulaması Akış şeması 4. kısım ... 82
Şekil 5-5 Fonksiyon uygulaması Akış şeması 5. kısım ... 83
Şekil 5-6 Fonksiyon uygulaması Akış şeması 6. kısım ... 83
Şekil 5-7 Fonksiyon uygulaması Akış şeması 7. kısım ... 84
Şekil 5-8 Fonksiyon uygulaması Akış şeması 8. kısım ... 84
Şekil 5-9 Fonksiyon uygulaması Akış şeması 9. Kısım .. 85
Şekil 5-10 Fonksiyon uygulaması Akış şeması 10. kısım ... 85
Şekil 5-11 Fonksiyon uygulaması Akış şeması 11. kısım ... 86
Şekil 5-12 Fonksiyon uygulaması Akış şemasının çıktısı ... 86
Şekil 5-13 Bankamatik uygulaması Ana Algoritma 1. Kısım 87
Şekil 5-14 Bankamatik uygulaması Menu fonksiyon algoritması 88
Şekil 5-15 Bankamatik uygulaması bekle fonksiyonu akış şeması 88
Şekil 5-16 Bankamatik uygulaması Ana Algoritma 2. Kısım 89
Şekil 5-17 Bankamatik uygulaması Ana Algoritma 3. Kısım 90
Şekil 5-18 Bankamatik uygulaması Ana Algoritma 4. Kısım 91
Şekil 5-19 Bankamatik uygulaması Ana Algoritma 5. Kısım 92
Şekil 5-20 Bankamatik uygulaması Ana Algoritma 6. Kısım 93
Şekil 6-1 Temizle ... 94
Şekil 6-2 İleri ... 94
Şekil 6-3 Ev ... 94
Şekil 6-4 Dönüş ... 95
Şekil 6-5 Çokgen çizme uygulaması akış şeması ana algoritma 95
Şekil 6-6 Çokgen çizme uygulaması for döngüsü ... 96
Şekil 6-7 Kaplumbağa grafik ekleme ekranı ... 96
Şekil 6-8 İleri şeklini ekleme ekranı .. 97
Şekil 6-9 Dönüş şeklini ekleme ekranı .. 97
Şekil 6-10 Programın çıktısı .. 98
Şekil 6-11 Ana fonksiyon 1. kısım .. 99
Şekil 6-12 Ana fonksiyon 2. kısım .. 99
Şekil 6-13 Programın bu kısma kadar olan çıktısı ... 100
Şekil 6-14 Ana program 3. kısım ... 100
Şekil 6-15 Programın son halinin çıktısı ... 101
Şekil 6-16 Fraktal örneği ... 103
Şekil 7-1 Açık .. 104
Şekil 7-2 Kapalı ... 104
Şekil 7-3 Okuma ... 104
Şekil 7-4 Yazma .. 105
Şekil 7-5 Ana algoritma 1. Kısım .. 105
Şekil 7-6 Okumak istediğimiz dosyayı akış şemasına ekleme ekranı 106
Şekil 7-7 Dosya okuma eklendikten sonra akış şemasındaki görünüm 107
Şekil 7-8 Program çalıştırıldıktan sonra oluşan çıktı ... 107
Şekil 7-9 Akış şemasına açık şekli ekleme ekranı ... 108
Şekil 7-10 Okumak istediğimiz dosyayı belirleme ekranı ... 109
Şekil 7-11 Akış şemasına dosya içinde yapılması istenen şekillerin ekleme ekranı . 109
Şekil 7-12 Program çalıştıktan sonra oluşan txt dosyası ... 110
Şekil 8-1 Flowgorithm ile akış şemalarını dönüştürebileceğimiz diller 111
Şekil 8-2 Ana fonksiyonumuz 1. kısım ... 112
Şekil 8-3 Bekle Fonksiyonumuz .. 113
Şekil 8-4 Ana fonksiyon 2. kısım .. 113

Flowgorithm Uygulaması ile Algoritma Geliştirme 11

Şekil 8-5 Ana fonksiyon 3. kısım .. 114
Şekil 8-6 Ana fonksiyon 4. kısım .. 114
Şekil 8-7 Menü fonksiyonu ... 115
Şekil 8-8 Ana fonksiyon 5. kısım .. 116
Şekil 8-9 Ana fonksiyon 6. kısım .. 117
Şekil 8-10 Ana fonksiyon 7. kısım .. 118
Şekil 8-11 Ana fonksiyon 8. kısım .. 119
Şekil 8-12 Ana fonksiyon 9. kısım .. 120
Şekil 8-13 Oyun Genel Yapısı ... 122
Şekil 8-14 Ana fonksiyon 1. kısım .. 122
Şekil 8-15 Ana fonksiyon 2. kısım .. 123
Şekil 8-16 Tahta çizme fonksiyonu ... 123
Şekil 8-17 Ana fonksiyon 3. kısım .. 124
Şekil 8-18 Oyuncu hamlesi çizme fonksiyonu .. 125
Şekil 8-19 Ana fonksiyon 4. kısım .. 125
Şekil 8-20 Oyumcu karesi seçme Fonksiyonu .. 126
Şekil 8-21 Oyuncunun geçerli kare seçtiğini kontrol eden fonksiyon 126
Şekil 8-22 Ana fonksiyon 5. kısım .. 127
Şekil 8-23 Tahtayı güncelleme fonksiyonu ... 128
Şekil 8-24 Ana fonksiyon 6. kısım .. 129
Şekil 8-25 Ana fonksiyon 7. kısım .. 129
Şekil 8-26 Ana fonksiyon 8. kısım .. 130
Şekil 8-27 Bilgisayarın hamle seçeceği fonksiyon .. 131
Şekil 8-28 Kazananın kontrol edildiği fonksiyon .. 132
Şekil 8-29 Satır sayısının hesaplandığı fonksiyon ... 133
Şekil 8-30 Sütun sayısının hesaplandığı fonksiyon ... 134
Şekil 8-31 Çapraz aynı sembollerin yan yana geldiğini kontrol eden fonksiyon 135
Şekil 8-32 Kazananı kontrol eden fonksiyonun son kısmı .. 136
Şekil 8-33 Ana fonksiyon 9. kısım .. 137
Şekil 8-34 Ana fonksiyon 10. kısım .. 138
Şekil 8-35 Ana fonksiyon 11. kısım .. 139
Şekil 8-36 Ana fonksiyon 1. kısım .. 144
Şekil 8-37 Çizdirilmek istenen saat tasarımı ... 145
Şekil 8-38 Saat yüzeyini çizen algoritma 1. kısım .. 146
Şekil 8-39 Saat yüzeyini çizen algoritma 2. kısım .. 147
Şekil 8-40 Saat yüzeyindeki çentikleri çizen algoritma 1. kısım 148
Şekil 8-41 Saat yüzeyindeki çentikleri çizen algoritma 1. kısım 149
Şekil 8-42 Saat yüzeyini çizen algoritma 3. kısım .. 149
Şekil 8-43 Ana fonksiyon 2. kısım .. 150
Şekil 8-44 saat animasyonunu gerçekleştiren algoritma 1. kısım 151
Şekil 8-45 Saat imlecinin konumunu ayarlayan algoritma .. 151
Şekil 8-46 saat animasyonunu gerçekleştiren algoritma 2. kısım 152
Şekil 8-47 İmleci merkeze taşıyan algoritma .. 153
Şekil 8-48 Programın genel çıktısı .. 154
Şekil 7-49 Program için gerekli olan değişken isimleri ... 155
Şekil 8-50 Kullanıcının girdiği kelimedeki harfleri diziye toplayan fonksiyon 156
Şekil 8-51 kelimedeki harfleri dizinin elemanı yapan fonksiyon 158
Şekil 8-52 Kullanıcının girdiği harfin doğruluğunu kontrol eden fonksiyon 159
Şekil 8-53 Ana fonksiyon 2. kısım .. 160
Şekil 8-54 Ana fonksiyon 3. kısım .. 160

Flowgorithm Uygulaması ile Algoritma Geliştirme

12

Şekil 8-55 Ana fonksiyon 4. kısım .. 161
Şekil 8-56 Kullanıcının kalan hakkını kontrol eden fonksiyon 162
Şekil 8-57 Ana fonksiyon 5. kısım .. 163
Şekil 8-58 Ana fonksiyon 6. kısım .. 164
Şekil 8-59 Ana fonksiyon 1. kısım .. 169
Şekil 8-60 Ana fonksiyon 2. kısım .. 169
Şekil 8-61 Ana fonksiyon 3. kısım .. 170
Şekil 8-62 Kelime arama fonksiyonu 1. kısım .. 171
Şekil 8-63 Kelime arama fonksiyonu 2. kısım .. 172
Şekil 8-64 Parça al fonksiyonu 1. kısım .. 173
Şekil 8-65 Parça al fonksiyonu 2. kısım .. 174
Şekil 8-66 Kelime arama fonksiyonu 3. kısım .. 175
Şekil 8-67 Parça al fonksiyonu 3. kısım .. 176
Şekil 8-68 Parça al fonksiyonu 4. kısım .. 177
Şekil 8-69 Ana fonksiyon 4. kısım .. 178
Şekil 8-70 Ana fonksiyon 5. kısım .. 179
Şekil 8-71 Programın çıktısı .. 180

Flowgorithm Uygulaması ile Algoritma Geliştirme 13

1 Bölüm	
1.1 BİLGİ	İŞLEMSEL	DÜŞÜNCE	

Günümüzün hızla ilerleyen ve teknoloji odaklı 21. yüzyılında, bireylerden sahip
olmaları beklenen bir dizi temel beceri bulunmaktadır. Bu becerilerden biri de
düşünme becerileridir. Günümüzde eleştiril düşünme, yansıtıcı düşünme, yenilikçi
düşünme, tasarımcı düşünme, algoritmik düşünme, analitik düşünme, üst düzey
düşünme vb. düşünme becerilerinin farklı formlarıdır. Bilgisayar ve internetin
hayatımıza girmesi ile Bilgi İşlemsel Düşünme (BİD) özellikle öne çıkan ve önemi
giderek artan bir düşünme biçimidir. Bu kavram, Uluslararası Eğitim Teknolojileri
Topluluğu (ISTE) tarafından 21. yüzyıl becerilerinin ön koşulu olarak kabul
edilmekte ve insanların bilgisayarlarla iş birliği yapmasına olanak tanıyan bir
düşünme biçimi olarak tanımlanmaktadır. (Sarıkaya, 2019)

BİD, bilgisayar bilimlerinin temel kavramlarından yararlanarak problemleri çözme,
sistemler tasarlama ve insan davranışlarını anlama yaklaşımıdır. Bu beceri, sadece
bilgisayar uzmanlarına özgü olmakla kalmayıp, toplumun tüm kesimlerindeki
bireyler tarafından edinilmesi gereken evrensel bir yetenek olarak görülmektedir.
Saniyede bir milyarın üstünde işlem yapabilen bilgisayarların işlem ve çalışma
mantığı, düşünme becerilerinin farklı boyutlarına yönelik insanlara somut bir örnek
olmaktadır. Şekil 1-1’de bilgi işlemsel düşüncenin boyutları görülmektedir. (Şefik
& Urhan, 2023)

	

Şekil 1-1 Bilgi İşlemsel Düşünmenin Boyutları

İnsanoğlu için hangi yüzyılda yaşarsa yaşasın sahip olması gereken en önemli
becerilerden biri de problem çözmedir. Bilgi işlemsel düşünme ve bileşenleri
problem çözme becerilerinin güçlenmesini sağlamaktadır. Bilgi işlemsel
düşünmenin bileşenleri genellikle şu şekilde ifade edilmektedir:

Flowgorithm Uygulaması ile Algoritma Geliştirme

14

Problemi anlama: Problemin neden kaynaklandığını, hangi değişkenler ile ilgili
olduğunu net bir şekilde tespit etme. Örneğin doktorlar hastalara sorular sorarak
hastalığın tam olarak ne olduğunun belirlenmesi.

Problemi parçalara ayırma: Büyük problemleri daha küçük ve yönetilebilir
parçalara bölme. Örneğin bir araçta sorun olduğunda araca bağlanan bir donanım
sayesinde aracın tam olarak hangi parçadan ötürü çalışmadığın ortaya konması.

Örüntü tanıma: Verilerdeki veya problemlerdeki hareket şeklini belirleme. Örneğin
trafik ışıklarında kırmızıdan sonra sarı ve sarıdan sonra yeşil ışığın yanması sürekli
bir düzen içinde tekrarlanması.

Soyutlama: Gereksiz ayrıntıları göz ardı ederek problemin temel noktalarına
odaklanma. Örneğin araç hata tespit testinde sorunun motorda olduğunun
anlaşılması üzerine kaporta, elektrik, panel vb. bölümlerinin kapsam dışına
alınması.

Algoritmik düşünme: Bir problemi çözmek için adım adım bir yol haritası
oluşturma. Yol haritası oluşturulurken tüm giriş ve çıkış parametreleri dikkate
alınmalıdır. Tüm detaylar göz önünde bulundurulmalıdır. Başla ile bitir arasında
tüm yapılması gereken işlemler birer birer eksiksiz ve atlamadan listelenmelidir.
Alternatif algoritmalara hedeflere ulaşma sürecinin etkililik ve verimlilik
durumlarına göre karar verilmektedir.

Değerlendirme/Hata Ayıklama: Problem çözme sürecinin son aşaması genellikle
değerlendirme aşamasıdır. Bu sayede daha iyi bir çözüm yönteminin olup olmadığı
üzerinde durulur ve belirlenen çözüm yönteminin üstünlük ve zayıflıkları analiz
edilir. Varsa daha iyi bir çözüm yöntemi geliştirilmeye çalışılır. Bilgisayar
programlama sürecinde kodlama aşaması tamamlandıktan sonra program çalıştırılır
ve varsa programın çalışmasını engelleyen hatalı kodlar ayıklanır. Bu şekilde
program çalıştırılarak bilgisayar ortamındaki problem çözülmüş olur.

BİD; problem çözme başta olmak üzere yaratıcılık, düşünme becerileri, karar
verme, sorumluluk, analiz, özgüven ve işbirlikli öğrenme gibi diğer önemli 21.
yüzyıl becerileriyle de yakından ilişkilidir.

1.1.1 Eğitim	Sistemindeki	Önemi	ve	Uygulama	Alanları	

Eğitim sisteminin temel unsuru olan öğretmenlerin ve öğrencilerin BİD becerilerine
sahip olması, eğitimin verimliliği ve etkililiği açısından büyük önem taşımaktadır.
Hem Uluslararası Eğitimde Teknoloji Topluluğu (ISTE) hem de Millî Eğitim
Bakanlığı (MEB) gibi ulusal ve uluslararası kuruluşlar, öğretmenlerin teknoloji
okuryazarlığı ve BİD becerilerinin geliştirilmesi gerektiğini belirtmektedir.

Flowgorithm Uygulaması ile Algoritma Geliştirme 15

Öğretmenlerin BİD becerileri, öğrencilerin öğrenmeye ve teknolojiye yönelik
tutumlarını olumlu yönde etkileme gücüne sahiptir.

BİD'in eğitimdeki uygulama alanları oldukça geniştir. Özellikle bilgisayar
programlama, matematik eğitimi ve yapay zeka BİD'in entegrasyonu için verimli
bir zemin sunmaktadır. BİD tabanlı etkinlikler, öğrencilerin programlamayı,
matematiği daha iyi anlamalarına, günlük hayatla ilişkilendirmelerine, karar verme,
problem çözme, parçalara ayırma, örüntü tanımlama, soyutlama ve algoritma
geliştirme vb. gibi önemli becerileri kazanmalarına yardımcı olmaktadır.

Günümüzde özellikle blok tabanlı programla herkesin anlaması gereken bir
programlama türü olarak karşımıza çıkmaktadır. Arabalar, evler akıllanmakta ve
temizlik robotları ev hanımları tarafından blok tabanlı programlanarak
kullanılabilmektedir. Programlama, BİD becerilerinin geliştirilmesinde başvurulan
etkili bir yöntemdir. Öğrencilerin algoritmik düşünme ve problem çözme becerileri
üzerinde programlama olumlu bir etki göstermektedir. Scratch, mblock, Python gibi
kodlama platformları, simülasyon yazılımları ve robotik kitler, BİD tabanlı
etkinliklerde sıkça kullanılan araçlardır.

1.1.2 BİD	ve	Bilgi	ve	İletişim	Teknolojileri	(BİT)	Yeterlikleri	

Bilgi ve İletişim Teknolojileri (BİT) yeterlilikleri, öğretmenlerin eğitimde
teknolojiyi etkin, verimli ve bilinçli bir şekilde kullanabilme becerilerini ifade
etmektedir. Bilgi işlemsel düşünme ve BİT yeterlikleri birbiriyle yakından ilişkili
kavramlardır. Yapılan araştırmalar, öğretmen adaylarının BİT yeterlikleri ile BİD
becerileri arasında pozitif yönde ve zayıf düzeyde bir ilişki olduğunu göstermiştir
(Akgün, 2020). Bu durum, bilgisayar donanım ve yazılım bilgisine sahip olmanın,
BİT yeterliklerini ve dolayısıyla BİD becerilerini olumlu yönde etkileyebileceğini
düşündürmektedir. Bilgisayarı tanımak ve onu programlayabilmek için nasıl
çalıştığını bilmek ve işlemleri nasıl yaptığını anlamak gerekmektedir. Bu
doğrultuda BİT yeterlilikleri, BİD becerilerinin gelişmesine destek olmaktadır.

Bir kişi bilgisayarların ve diğer makinelerin dilini okuyabiliyor ve yazabiliyorsa
kod okuryazarı olarak adlandırılmaktadır. Kod okuryazarlarının bir problemin
çözüm sürecinde yürüttükleri akıl yürütme eylemlerinin temelinde bilgi işlemsel
düşünce yer almaktadır (Şefik & Urhan, 2023). Papert 1980 tarafından ortaya atılan
bilgi işlemsel düşünce kavramı ilk kez Wing 2006 tarafından “Problem çözmeye bir
yaklaşım, sistem tasarlama programlamaya temel olan insan davranışlarını anlama”
şeklinde tanımlamıştır.

Bilgi işlemsem düşünce insanın zekasını ve hayal gücünü kullanarak bilgisayarın
düşünme tarzını ve kapasitesini geliştirmesi, problem çözmeye, iletişim ve
etkileşim becerilerinin düzenlemeye odaklı mantıksal bir düşünme sürecidir (Şefik

Flowgorithm Uygulaması ile Algoritma Geliştirme

16

& Urhan, 2023). Bilgi işlemsel düşünme becerisi, adından dolayı ilk başta
bilgisayar ile ilgili çağrışımlarda bulunsa da çok daha geniş bir etki alanına sahiptir
(Üzümcü, 2018). Bilgisayarların çalışma sistemleri, insanların günlük yaşamdaki
problem çözme sistemi olarak düşünüldüğünde, sadece bilgisayar ile ilgili kişilerin
değil, herkesin bu beceriye sahip olması gerektiği öne sürülmektedir (Wing, 2006)

Bilgi işlemsel düşünme sürecine yönelik tanımlamalarda yapılan vurguların
sınıflandırılmasına ilişkin diyagram (Tang ve diğerleri, 2020) Tablo 1-1’de yer
almaktadır.

Tablo 1-1 Bilgi işlemsel düşünme tanımları

Algoritmalar, bilgi işlemsel düşünmenin çoğu kaynakta yer alan boyutlarından
biridir (Şefik & Urhan, 2023). Şimdi algoritma kavramını inceleyerek devam
edelim.

1.2 ALGORİTMA	
1.2.1 Algoritma	Nedir?	

Algoritma, bir işlemin gerçekleştirilmesi için izlenmesi gereken açık ve kesin talimatlar
dizisidir (Levitin, 2003). Kısacası algoritmalar, sistemli ve planlı bir şekilde bir sorunu
çözmek bir ihtiyacı karşılamak bir için adım adım izlenen bir dizi işlemdir. Yani belli
bir problemi çözmek için veya çözüme ulaşmak için tasarlanan yoldur.

Algoritma kelimesi hesaplamalarda veya diğer problem çözme işlemlerinde izlenecek
bir süreç veya kurallar kümesi anlamına da gelmektedir. Tüm programlama dillerinde
temel olarak algoritma vardır. Algoritma yazılımın omurgasıdır. Bir programın

Flowgorithm Uygulaması ile Algoritma Geliştirme 17

kullanıldığı dil ne olursa olsun temelinde mutlaka algoritmalar bulunmaktadır.
Flowgorithm uygulamasında algoritma geliştirildikten sonra bu algoritmanın Java,
Phyton, PHP, C++, Visual Basic vb. programlama dillerindeki yazılım karşılığı anında
görülebilmektedir. Herhangi bir program yazmadan önce algoritma hazırlamak hatalı
kodlama oranını azaltarak programı doğru bir şekilde yazmayı kolaylaştırmaktadır.

1.2.2 Algoritmanın	Tarihi	

Tarihte ilk algoritma örneği Türkistanlı bir bilim insanı tarafından yapılmıştır. El-
Harezmi tarafından yazılan “Hisab el-cebir ve el-mukabala” adındaki kitabında ilk kez
algoritma kullanılmıştır. Algoritma sözcüğü ise Avrupalılar tarafından El-Harezmi
isminin telaffuzundan doğmuştur. Şimdilerde ise algoritma, programlama dilleri
vasıtasıyla bilgisayarların, internetin ve yapay zekanın daha etkili bir şekilde
çalışmasına öncülük etmektedir (Attila, 2022).

1.3 Algoritmadan	Programlamaya	Aşamalar	

Algoritmanın tasarlanması ve geliştirilmesinde izlenen aşamalar aşağıdaki gibidir.
(Aydoğdu, 2020)

 1. Problemin tanımlanması: Algoritma bir problem
çözme yöntemidir. Problemin etkili kolay ve hızlı bir şekilde
çözülebilmesi öncelikle problemin net açık ve doğru bir
şekilde anlaşılması ve tanımlanmasına bağlıdır. Örneğin
hastalanıp hastaneye gittiğimizde doktor hemen belirli
kontroller ve testler yaparak problemi doğru bir şekilde
belirlemeye çalışmaktadır. Örnek olarak iki sayının
toplamının sorulduğu bir problem ele alınabilir. Farkında
olmadığımız dikkatimizi çekmeyen problemleri gündeme
almamakta ve çözmeye çalışmamaktayız.

2. Girdi ve Çıktıların Belirlenmesi: Doğru ve net
bir şekilde tanımlanan problemin neden kaynaklandığı
üzerinde durulur. Algoritmalar ile problem çözümü aynı
zamanda sistematik bir yaklaşımı gerektirmektedir.
Probleme neden olan girdi değişkenleri ve problemin
çözümü sonucunda ortaya çıkması gereken çıktı değişkeni
belirlenmelidir. Girdi ve çıktılar belirlendikten sonra
problemin çözümü için kullanılabilecek en kısa adımlar
karşılaştırılmalıdır. Buna ek olarak probleme neden olan
girdilerinin sayısı ve büyüklüğü, adımların toplam maliyeti

Şekil 1-2 Problemin
Anlaşılması ve
Tanımlanması

Şekil 1-3 Girdi ve Çıktıların
Belirlenmesi

Flowgorithm Uygulaması ile Algoritma Geliştirme

18

ile problemin çözümüne ulaşma hızı vb. dikkate alınabilecek ölçütlerdir. Örneğin
yapay zeka girdi olarak kullanıcılardan istem (prompt) almakta ve çıktı olarak
istemin yanıtını vermektedir. İstem yani girdiler ne kadar net olarak tanımlanırsa
çıktı da o kadar amacına uygun ve hedefe yönelik olmaktadır. Örnek durumumuzu
dikkate alarak iki sayının toplamının sorulduğu bir problem ele alındığında Girdiler:
A, B ve Çıktılar: Toplam değişkeni ile ifade edilebilir.

3. Çözüm Yönteminin Bulunması: Bir problemin çözümü için birden fazla
çözüm alternatifi olabilmektedir. Bu noktada programcının şartlara koşullara en
uygun, en kolay olan çözümü tercih etmesi gerekmektedir. Çünkü karmaşık
çözümlemeler programa dönüştürüldüğünde anlaşılabilirliği zorlaşabilmektedir.
Bir sayının tek mi çift mi olduğu belirlenmek istendiğinde sayının 2’ye bölümünden
kalana bakılarak çözüm bulunmaktadır. Kalan 0 olduğunda sayı “çift” ve kalan 1
olduğunda sayı “tektir” denmektedir. Problem durumunu ele alırsak çözüm yöntemi
Toplam=A+B olacaktır.

4. Algoritmanın Geliştirilmesi: Çözüm yöntemi bulunduktan sonra çözüm

için tüm işlemler başlangıç ve bitiş adımları arasında tamamlanmaktadır. Giriş
değişkenleri üzerinde çeşitli işlemler yapılarak istenen çıktıya ulaşılması
hedeflenmektedir. Ortaya çıkan çözüm yolu algoritmamızı oluşturmaktadır.
Algoritma oluşturulduktan sonra kontrol edilmelidir. Kontrol esnasında bir eksiklik
ya da bir hata ile karşılaşılır ise bu sorunun düzeltilmesi gerekmektedir. Bu
eksiklikler ve hatalar giderildikten sonra algoritma kâğıt üzerinde değerler vererek
test edilmelidir. Bu şekilde algoritmanın istenen çıktıları üretme durumu garanti
altına alınmaktadır. Aşağıda iki sayının toplamının algoritması görülmektedir.

Şekil 1-4 Çözüm Yöntemlerinin Belirlenmesi

Flowgorithm Uygulaması ile Algoritma Geliştirme 19

A1-BAŞLA
A2-Girdi ve Çıktıları tanımla (A, B, Toplam)
A3-A’nın değerini gir
A4-B’nin değerini gir
A5-Toplam=A+B
A6-Toplam’ı yaz
A7-BİTİR

5. Akış Diyagramının Oluşturulması: Problemi çözebilmek için gerekli
tüm işlemler başlangıç ve bitiş adımları arasında tamamlanmaktadır. Akış
diyagramlarında algoritma kapsamında belirlenen her bir işlem bir sembol ile ifade
edilerek algoritmaya ait akış diyagramı oluşturulmaktadır. Şekil 1-6’da iki sayısının
toplamına yönelik akış diyagramı görülmektedir.

Tablo 1-2’de akış diyagramlarında yapılacak işleme göre kullanılması gereken
semboller görülmektedir (Şefik & Urhan, 2023).

Şekil 1-5 Algoritmanın Geliştirilmesi

Şekil 1-6 İki Sayının Toplamı Algoritması

Flowgorithm Uygulaması ile Algoritma Geliştirme

20

 6.Algoritmanın Program Kodlarına Dönüştürülmesi: İlk 4 aşama genel
olarak tüm programlama dillerinde aynıdır denilebilir. Algoritmaların geliştirilmesi
programlama dilinden bağımsızdır. Ancak ifadeler, gösterimler ve fonksiyonlar
birbirlerinden farklılık göstermektedir. Algoritmanın geliştirilmesi ve
doğruluğunun test edilmesinin ardından algoritmanın kodlanması aşamasına
geçilmektedir. Bu aşamada, programcı algoritmanın yayınlanacağı ortam, kullanıcı
ihtiyaçları ve sistem gereksinimlerini dikkate alarak uygun programlama dilini
seçer ve programlama dilinin kendine has ifade, gösterim, komut ve fonksiyonları
program kodlarını yazmaktadır. Aşağıda iki sayının toplamına yönelik algoritmanın
JavaScript, VBasic, C# ve Phyton dillerindeki kod karşılığı görülmektedir.

Tablo 1-2 Akış şemalarında kullanılan semboller (Vatansever, 2017)

Flowgorithm Uygulaması ile Algoritma Geliştirme 21

• İki Sayının Toplamı Algoritmasının JavaScript Kodu

• İki Sayının Toplamı Algoritmasının Visual Basic Kodu

• İki Sayının Toplamı Algoritmasının C# Kodu

• İki Sayının Toplamı Algoritmasının Phyton Kodu

Flowgorithm Uygulaması ile Algoritma Geliştirme

22

7.Çalıştırma ve Hata Ayıklama: Algoritmanın belirli bir programlama diline
dönüştürülmesiyle oluşturulan kodlar, bilgisayar ortamında çalıştırılarak test
edilmelidir. Bu aşamanın temel amacı, yazılan programın, en başta net ve açık bir
şekilde tanımlanan problemi doğru çözüp çözmediğini ve hedeflenen çıktıları üretip
üretmediğini kontrol etmektir. Programlama sürecinde, algoritmanın geliştirilmesi
aşamasında kâğıt üzerinde yapılan testlere rağmen gözden kaçan mantık hataları
veya seçilen programlama dilinin kurallarına (sözdizimi) aykırı yazılımlar
nedeniyle hatalarla karşılaşılabilmektedir. Tıpkı problemin tanımlanması
aşamasında bir doktorun problemi belirlemek için testler yapması gibi, programcı
da bu aşamada karşılaşılan hataların kaynağını tespit etmek ve düzeltmek için "hata
ayıklama" (debugging) işlemini gerçekleştirmektedir. Örneğin, iki sayının toplamı
probleminde, eğer program doğru girdiler verildiğinde A+B işlemi yerine yanlış bir
çıktı üretiyorsa, bu durum algoritmadaki bir mantık hatasını veya programlama
dilinin kurallarına uygun olmayan bir durumun varlığını göstermektedir. Hata
ayıklama sürecinde programın algoritması kontrol edilerek bir mantık hatası varsa
tespit edilmeye çalışılır. Algoritma ile ilgili bir sorun yoksa programlama dilinin
kurullarına uygun olmayan ifadeler, gösterimler, komutlar kontrol edilerek yazım
hataları varsa düzeltilir. Hatalar giderildikten sonra program tekrar çalıştırılır ve
istenen sonuç garanti altına alınana kadar bu döngü devam eder.

Algoritmalar özellikle bir problemin çözümü ve problem çözümünden hareketle bir
yazılımın ortaya çıkarılabilmesi için geliştirilmektedir. Şekil 1-7’de iki sayının
toplamını ifade eden algoritmadan programlamaya 7 temel aşama görülmektedir.

	

Şekil 1-7 Algoritmadan Programlamaya 7 Temel Aşama

Algoritmanın Özellikleri Nelerdir?

• Her algoritmanın bir başlangıç ve bir bitiş noktası vardır.
• Algoritma başlangıç ve bitiş noktası arasında işlemlerden oluşur.

Flowgorithm Uygulaması ile Algoritma Geliştirme 23

• İşlemler, giriş değişkenlerinin işlenerek adım adım istenen çıktının
üretilmesine yöneliktir.

• Her bir işlem açık, net ve anlaşılır olmak zorundadır.
• Her adımın bilgisayarda uygulanabilir olması gerekir.
• Algoritma sonsuz bir döngüye girmemelidir.
• Algoritma problemi çözerken en az süreyi ve en az belleği kullanmayı

hedeflemelidir.

1.4 Algoritmalarda	Kullanılan	Terimler	
1.4.1 Tanımlayıcı	

Programı yazan kişi tarafından oluşturulan ve programdaki değişkenleri, sabitleri, kayıt
alanlarına verilen isimdir. İsimler harfle başlamalıdır ve boşluk içeremezler.

Örnek:
✅ Doğru: VizeNotu, toplamFiyat, sayac
❌ Yanlış: 1.Yazılı (Sayıyla başlamaz), toplam fiyat (Boşluk olmaz)

1.4.2 Değişken	

Program her çalıştırıldığında farklı değerler alabilen ve değişebilen alanlardır.
Değişkenler, verilerin hafızada saklandığı adresleri temsil ederler. Flowgorithm'de bir
değişkeni kullanmadan önce, programın onu tanıması için mutlaka oluşturmamız
gerekir. Buna tanımlama denir. Değişken tanımlarken değişkenin tipi de mutlaka
belirtilenmelidir. integer, string, boolean vb.

Örnek:
İsim: KullaniciAdi -> Tür: String (Metin)
İsim: DaireAlan -> Tür: Real (Ondalıklı Sayı)

1.4.3 Atama	

Bir işlemin sonucunu başka bir değişkende göstermesine atama denir. Atama,
oluşturduğumuz değişken içine bir değer koyma veya var olan değeri değiştirme
işlemidir. Bilgisayar bu işlemi her zaman sağdan sola doğru yapar.

Örnekler:
Yas = 18 (Yas kutusuna 18 değerini koy.)
Alan = KisaKenar * UzunKenar (Sağ taraftaki çarpma işlemini yap,
sonucu Alan değişkenine ata.)

1.4.4 Sayaç	

Bazı programlamalarda işlemlerin belirli sayıda yapılması için sayaçlar konulur.
Genellikle bir döngünün kaç kez döndüğünü takip etmek veya bir olayın kaç kez
gerçekleştiğini saymak için kullanılan özel bir atama işlemidir. Değişkenin kendi

Flowgorithm Uygulaması ile Algoritma Geliştirme

24

değeri üzerine ekleme yapılır. Sayaç olarak tanımlanan değişken döngü her
döndüğünde (her bir çevrimde) değeri bir artarak sonraki çevrime başlar. Sayaçlar
programın duruma göre ikişer, üçer vb. artırılıp azaltılabilir.

Örnekler:
sayac = sayac + 1 (En yaygın kullanım - birer birer artırma)
toplam = toplam + sayi (Kümülatif toplama - birikimli sayaç)
faktoriyel=faktoriyel * sayac

1.4.5 Döngü	

Programlamada işlem blokları ardışık bir şekilde işlenebilmektedir. Programda
belirlenen sayıda gerçekleştiren çevrim yapılarına döngü adı verilmektedir. Döngü,
belirli bir bloğun (birden fazla kod satırı), bir koşul sağlandığı sürece (True/Doğru
olduğu sürece) tekrar tekrar çalıştırılması işlemidir.

Örnekler:
While Döngüsü: sayac < =100 olduğu sürece toplama işlemi yapılmaya
devam edebilir. While döngüsünde ilk işlem koşulun sağlanıp
sağlanmadığıdır. Koşul sağlanıyorsa döngü başlar. Bloktaki işlemlerin
tamamlanmasının ardından çevrim başında tekrar koşul kontrolü yapılır ve
koşullun sağlanma durumunu göre döngü devam eder ya da tamamlanır.

Do-While Döngüsü: sayac < 100 olduğu sürece ekrana toplama işlemini
yapmaya devam edebilir. Do-While döngüsünde koşulun sağlanıp
sağlanmadığına blogun en sonunda bakılır. Öncesinde bazı işlemler
yapılmaktadır. Koşul sağlanıyorsa döngü sürer, koşul sağlanmıyorsa döngü
tamamlanır.

For Döngüsü: 1'den 100'e kadar olan sayılar toplanabilir. For döngüsünde
bir sayaç kullanılır ve genelde bu sayaç i harfi ile isimlendirilir. Sayaca bir
başlangıç değeri, bir artış değeri verilmekte ve bir de döngünün istenilen
zamanda tamamlanabilmesi için koşul ifadesi yer almaktadır.

1.5 Algoritmada	Kullanılan	Operatörler	

Algoritma tasarım ve geliştirmede matematiksel işlem, karşılaştırma ve mantık
operatörleri kullanılmaktadır. Ayrıca metin tanımlayan değişkenler için metin
operatörü bulunmaktadır.

Flowgorithm Uygulaması ile Algoritma Geliştirme 25

1.5.1 Matematiksel	İşlem	Operatörleri	

Matematiksel işlem operatörleri toplama, çıkarma, çarpma, bölme, üst alma ve mod
işlemlerini ifade etmekte ve bu işlemlerin yapılmasını sağlamaktadır. Tablo 1-3’te
matematiksel işlem operatörleri sembolleri, örnekleri ve açıklamaları ile beraber
görülmektedir.

Tablo 1-3 Matematiksel işlem operatörleri (Aydoğdu, 2020)

Sembol İşlem Adı Örnek
Gösterim

Açıklama

^ Üs Alma 2^3 2’nin 3. kuvvetini hesaplar (2 × 2 × 2 = 8)
* Çarpma 3 * 6 İki değeri çarpar (Sonuç: 18).
/ Bölme 18 / 3 İlk değeri ikinci değere böler (Sonuç: 6)
+ Toplama 6 + 3 İki değeri toplar (Sonuç: 9)
– Çıkarma 16 – 6 İkinci değeri ilk değerden çıkarır (Sonuç:

10)
% Mod 3%2 İlk değerin ikinci değere bölümünden kalanı

verir (Sonuç: 1)
. Ondalık

Ayracı
3.14 Tam sayı ile kesirli kısmı ayırır (örneğin Pi

sayısı).

1.5.2 Karşılaştırma	Operatörleri	

Karşılaştırma operatörleri algoritmaların karar verme adımlarında koşul yazmak
için kullanılırlar. Değişkenlerin sabit bir değerden veya başka bir değişkenin
değerinden büyük mü, küçük mü, eşit mi, farklı mı olduğunu belirlemek amacıyla
kullanılırlar. Tablo 1-4’te karşılaştırma operatörleri sembolleri, örnekleri ve
açıklamaları ile görülmektedir.

Tablo 1-4 Karşılaştırma operatörleri (Aydoğdu, 2020)

Sembol(ler) İşlem Adı Örnek Gösterim Örnek Sonucu
> Büyük mü? 5 > 2 Doğru
< Küçük mü? 3 < 8 Doğru
== Eşit mi? 10 = 10 Doğru
<>, != Eşit değil mi,

Farklı mı?
5 <> 5 Yanlış

>= veya => Büyük eşit mi? 7 >= 7 Doğru
<= veya =< Küçük eşit mi? 4 <= 9 Doğru

Flowgorithm Uygulaması ile Algoritma Geliştirme

26

1.5.3 Mantık	Operatörleri	

Mantık operatörleri algoritmaların karar verme adımlarında koşullar arasında
mantık bağlantıları kurmak için kullanılırlar. Koşullar birbirlerine Ve, Veya, Değil
mantığı ile bağlanabilirler. Ve mantığı ile bağlanan koşullar için koşullardan
yalnızca birinin sağlanamaması koşulun sağlanamadığını göstermektedir. Ancak
tüm koşulların sağlandığı durumda sonuç lojik 1 yani doğru olabilmektedir. Veya
mantığında ise sonucun lojik 1 yani doğru olabilmesi için koşullardan herhangi
birinin sağlanması yeterli olmaktadır. Ancak hiçbir koşul sağlanmıyorsa o zaman
sonuç lojik 0 yani yanlış olarak kabul edilmektedir. Değil mantığında ise koşul
sağlanmıyorsa sonuç lojik 1 yani doğru, koşul sağlanıyorsa sonuç lojik 0 yani yanlış
olarak kabul edilmektedir. Mantıksal ve döngüsel algoritmalarda koşulların
sonuçları kullanılan mantık operatörüne göre belli olmakta ve bu sonuca göre karar
bloklarına ve döngü bloklarına ait kod satırları çalıştırılmaktadır. Tablo 1-5’te
mantık operatörleri ve örnek gösterimleri verilmektedir.

Tablo 1-5 Mantık operatörleri (Şefik & Urhan, 2023)

Operatör Anlamı Örnek Gösterim Örnek Sonucu
AND Ve Doğru Ve Yanlış Yanlış
OR Veya Doğru Veya Yanlış Doğru
NOT Değil Değil Doğru Yanlış

1.5.4 Metin	Operatörü	

& : Birleştirme (Concatenation) İşlemi = Girilen metinlerin birleştirilerek yan yana
getirilmesini sağlamaktadır. Örneğin “Merhaba” & “Ali” işleminin sonucu “Merhaba
Ali” olmaktadır. “11” & “11” işlemi yapıldığında sonuç “1111” olmaktadır.

1.6 Algoritma	Örnekleri	

Bu kitapta doğrusal (sıralı yapı), mantıksal (karar/seçim yapısı) ve döngüsel
(tekrarlı/yinelemeli) algoritmalar üzerinde durulmaktadır. Belirtilen algoritmaların
sahip olduğu yapı Şekil 1-8’de görülmektedir.
	

Flowgorithm Uygulaması ile Algoritma Geliştirme 27

Şekil 1-8 Doğrusal, Mantıksal ve Döngüsel Algoritma Yapıları	

	
Doğrusal Algoritmalar: Algoritmanın ilk adımdan başlayıp, hiçbir sapma yapmadan,
yukarıdan aşağıya doğru adım adım ilerleyip sonlanmasıdır. Sadece başla, işlemler ve
bitir vardır. Doğrusal algoritmalar içinde hiçbir koşul (if) ve döngü (for, while, do-
while) yer almamaktadır. Doğrusal algoritmaya ve akış diyagramına (Şekil 1-9)
aşağıdaki üç sayının toplamı örneği verilebilir:

A1 : Başla.
A2 : Birinci sayıyı gir.
A3 : İkinci sayıyı gir.
A4 : Üçüncü sayıyı gir.
A5 : Sayıların üçünü topla.
A6 : Toplam sonucunu üçe böl.
A7 : Sonucu yaz.
A8 : Bitir.

Mantıksal (Karar/Seçim) Algoritmalar: Algoritmanın, adımları içinde bir soruya
"Evet" veya "Hayır" cevabı vererek yolunu değiştirebilmesidir. Algoritma akışı, belirli
bir koşula (if) göre ikiye veya daha fazlaya ayrılır. Başla, işlemler ve bitir adımları
yanında evet hayır vb. farklı yanıtları olabilen mutlaka bir koşullu ifade bulunmaktadır.
Mantıksal algoritmaya ve akış diyagramına (Şekil 1-10) aşağıdaki sayı tek mi çift mi
örneği verilebilir:

A1 : Başla.
A2 : Kullanıcıdan bir sayı iste ve bu sayıyı n değişkenine kaydet.
A3 : Karar Anı: n sayısının 2'ye bölümünden kalan 0 mı diye kontrol et.

• Eğer Evet ise (Koşul Doğru): Ekrana "Girdiğiniz sayı Çifttir" yaz.
• Eğer Hayır ise (Koşul Yanlış): Ekrana "Girdiğiniz sayı Tektir" yaz.

A4 : Bitir.

Şekil 1-9 Doğrusal Algoritma Akış Diyagramı

Flowgorithm Uygulaması ile Algoritma Geliştirme

28

Döngüsel Algoritmalar: Belirli bir işlemin, bir koşul sağlandığı sürece tekrar tekrar
yapılmasıdır. Program akışı doğrusal algoritmada olduğu gibi sürekli ileri gitmez,
belirli bir döngü içinde yukarıdan aşağıya doğru koşul sağlanıncaya kadar işlemler
yapılmaya devam etmektedir. Döngüsel algoritmalarda doğrusal ve mantıksal
algoritma yapıları beraber kullanılmakla birlikte aynı zamanda koşulun durumuna göre
tekrar tekrar yukarıdan aşağıya doğru bir işlem akışı söz konusudur. Bu süreç döngüsel
algoritmanın daha karmaşık işlemleri yapmasını sağlamaktadır. Döngüsel algoritmaya
ve akış diyagramına (Şekil 1-11) 1’ den 10’a kadar olan sayıların toplamı örneği
verilebilir:

A1 : Başla
A2 : sayac = 1, toplam =0
A3 : Karar (Döngü Koşulu): Elimizdeki sayaç değeri 10'dan küçük veya 10'a eşit
mi? diye kontrol et.
• Eğer Evet ise (Döngüye Gir):

a. toplam= toplam + sayaç
b. sayac= sayaç +1
c. Tekrar A3 adımına (Karar anına) geri dön.

• Eğer Hayır ise (Döngüden Çık): Artık sayaç 11 olmuş demektir, şart
bozulmuştur. Döngüden çık.

A4 : toplam sonucunu yaz
A5: Bitir

Şekil 1-10 Mantıksal Algoritma Akış Diyagramı

Şekil 1-11 Döngüsel Algoritma Akış Diyagramı

Flowgorithm Uygulaması ile Algoritma Geliştirme 29

2 Bölüm	
2.1 Flowgorithm	İndirme	Linki	

Flowgorithm	programı	aşağıdaki	linkten	indirilebilmektedir:	
http://www.flowgorithm.org/download/index.html

2.2 Program	Hakkında	

Flowgorithm, akış diyagramları kullanarak program oluşturmayı sağlayan ücretsiz
bir uygulamadır. Bilgisayar bilimlerinde akış diyagramı (İngilizcede flowchart
olarak da bilinir), algoritmaların, prosedürlerin ve işletme talimatlarının kontrol ve
yürütme akışını temsil etmek için kullanılan grafiksel bir modelleme dilidir.

Akış diyagramları, şematik veya grafik biçimde aşağıdaki unsurları ifade etmenizi
sağlar:

• Yapılacak işlemler, her biri belirli bir mantıksal anlam taşıyan geleneksel
şekillerle (dikdörtgen, elips, altıgen, paralelkenar vb.) gösterilir. Bu şekiller
genellikle gerçekleştirilecek faaliyeti açıklayan metin içerir.

• İşlemlerin sıralaması, şekiller arasındaki bağlantı oklarıyla temsil edilir.

Bu topolojik özellikleri nedeniyle akış diyagramları, daha geniş bir sınıf olan blok
diyagramlarının bir alt türü olarak kabul edilir. Blok diyagramları da bilgiyi
tanımlamak ve temsil etmek için kullanılan kavram haritalarının bir parçasıdır.

Genellikle programlar bir metin düzenleyici kullanılarak yazılır. Programlama
diline bağlı olarak bu süreç, özellikle yeni başlayanlar için kolay olabileceği gibi
oldukça zor da olabilir. Birçok dilde "Merhaba Dünya!" şeklindeki basit bir ifadeyi
ekrana yazdırmak bile birkaç satır kod gerektirebilir.

Flowgorithm ise bu süreci kolaylaştırarak, programın gerçekleştirmesini istediğiniz
işlemleri farklı sembollerle temsil etmenize olanak tanır. Böylece kullanıcı, bir
programlama dilinin ayrıntılarına takılmadan algoritma geliştirmeye (Bilgisayarca
Düşünme) odaklanabilir. Flowgorithm ile oluşturulan programlar doğrudan
uygulama içinde çalıştırılabilir. Ayrıca, yüksek seviyeli bir programlama dili
öğrenmek isteyenler için Flowgorithm akış diyagramlarını birçok popüler dile
dönüştürebilir.

Bu diller arasında C#, C++, Delphi/Pascal, Java, JavaScript, Lua, Perl, Python,
QBasic, Ruby, Swift 2, Visual Basic .NET, Visual Basic for Applications
(Microsoft Office’de kullanılır), TypeScript ve Scala yer almaktadır.

http://www.flowgorithm.org/download/index.html

Flowgorithm Uygulaması ile Algoritma Geliştirme

30

2.3 Programın	Özellikleri	ve	İşlevleri	

	
2.3.1 Arayüz	

Flowgorithm’in arayüzü oldukça basit ve sezgisel bir yapıya sahiptir. Menü
bölümü, yazılım tarafından sunulan tüm işlevleri içerirken; sekmeler bölümü,
algoritmanın kolaylıkla uygulanması, çalıştırılması ve kontrol edilmesine yönelik
temel işlevleri barındırır. Aşağıda verilen Şekil 2-1, programın üst sekme
görünümünü göstermektedir.

Şekil 2-1 Programın Üst Sekmeleri

2.3.2 Çoklu	Dil	Desteği	

Aşağıda verilen Şekil 2-2’de Flowgorithm programının desteklediği diller
görülmektedir.

Şekil 2-2 Desteklenen Diller

Görünüm sekmesi altındaki “Dili Değiştir” seçeneğine tıklayarak dil seçme
ekranını açabilirsiniz (Şekil 2-3).

Flowgorithm birçok dile çevrilmiştir:
• Basitleştirilmiş Çince
• Çekçe
• İngilizce - ABD ve Britanya
• Fransızca
• Galce
• Almanca
• Macarca
• İtalyanca
• Japonca

.

.

Flowgorithm Uygulaması ile Algoritma Geliştirme 31

Şekil 2-3 Dil Değiştirme Sekmesi

Şekil 2-4’te görüldüğü gibi “Dil değiştir” ekranından istediğiniz dili seçebilirsiniz.

Şekil 2-4 Dil Değiştir Ekranı

2.3.3 Araç	Çubuğu	

Menü çubuğunun hemen altında, en sık kullanılan komutlara hızlı erişim sağlayan
standart araç çubuğu yer alır. Bu araç çubuğu, dosya yönetimi ve önemli işlemlerin
yürütülmesi için kullanılan kısayol düğmelerini içerir. Aşağıdaki Tablo 2.1’de bu
sekmelere ilişkin açıklamalar verilmiştir.

Flowgorithm Uygulaması ile Algoritma Geliştirme

32

Tablo 2-1Programın Üst Sekmeleri

Dikkat: Standart araç çubuğundaki düğmeler, menü çubuğunda yer alan en sık
kullanılan öğelerle eşleşir. Bu nedenle standart araç çubuğunun amacı, bu öğelere
daha hızlı ve kolay erişim sağlamaktır. Örneğin, üzerinde çalıştığınız belgeyi
kaydetmek için her seferinde Dosya menüsünü açıp Kaydet seçeneğini tıklamak
yerine, standart araç çubuğundaki ilgili düğmeyi kullanmanız yeterlidir.

Standart araç çubuğundaki düğmelere klavyeyle erişmek de mümkündür:

• “Alt” tuşuna basarak menü çubuğunu etkinleştirin.
• Ardından “Ctrl” + “Tab” tuşlarını kullanarak standart araç çubuğuna geçiş

yapın.

Bu işlemden sonra standart araç çubuğundaki ilk düğme seçilecektir. Düğmeler
arasında gezinmek için sola doğru ilerlemek amacıyla Tab, sağa doğru ilerlemek

Flowgorithm Uygulaması ile Algoritma Geliştirme 33

için ise Shift + Tab tuşlarını kullanabilirsiniz. İstediğiniz düğmeyi bulduğunuzda
Enter tuşuna basarak ilgili işlemi gerçekleştirebilirsiniz.

2.3.4 Menü	Çubuğu	

Menü çubuğu, programdaki komutların büyük bölümünü içeren ve menü başlıklarına
göre düzenlenmiş seçenek listelerinden oluşur. Menü çubuğunu klavyeyle kullanmak
için aşağıdaki adımları izleyebilirsiniz:

• “Alt” tuşuna basarak menü çubuğunu etkinleştirin.
• Sağ veya sol ok tuşlarını kullanarak menü başlıkları arasında gezinin.
• İstediğiniz menüyü bulduğunuzda, menüdeki seçenekleri görmek için yukarı

veya aşağı ok tuşlarına basın.
• Uygun seçeneği bulduğunuzda, komutu çalıştırmak için “Enter” tuşuna basın.

Ayrıca, belirli menüleri hızlıca açmak için aşağıdaki klavye kısayollarını
kullanabilirsiniz:

• Dosya Menüsü: Alt + F
• Düzen Menüsü: Alt + E
• Görünüm Menüsü: Alt + V
• Yürütme Menüsü: Alt + R
• Yardım Menüsü: Alt + H

Bir menüyü kapatmak için menüden bir komut seçebilir, başka bir menüyü
etkinleştirebilir veya “Alt” tuşuna basabilirsiniz.

2.3.5 Dosya	menüsü	

Şekil 2-5’te dosya menüsünde yer alan sekmeler görülmektedir.

Şekil 2-5 Dosya menüsündeki sekmelere ulaşma

Flowgorithm Uygulaması ile Algoritma Geliştirme

34

Aşağıda verilen Tablo 2-2’de ilgili sekmelerin açıklamaları verilmiştir.

Tablo 2-2 Tablo sekmelerinin açıklamaları (Atzori, 2022)

2.3.6 Düzenle	Menüsü	

Şekil 2-6’da düzenle menüsünde yer alan sekmeler görülmektedir.

	
Şekil 2-6 Düzenle menüsündeki sekmelere ulaşma

Aşağıda verilen Tablo 2-3’te düzenle menüsüne ait sekmelerin açıklamaları
verilmiştir.

Tablo 2-3 Düzenle menüsü sekmelerin açıklamaları (Atzori, 2022)

Flowgorithm Uygulaması ile Algoritma Geliştirme 35

2.3.7 Görünüm	Menüsü	

Aşağıda görülen Şekil 2-7’de görünüm menüsüne ait sekmeler yer almaktadır.

Şekil 2-7 Görünüm menüsündeki sekmelere ulaşma

Aşağıda verilen Tablo 2-4’te görünüm menüsüne ait sekmelerin açıklamaları
verilmiştir.
Tablo 2-4 Görünüm menüsü sekmelerin açıklamaları (Atzori, 2022)

Flowgorithm Uygulaması ile Algoritma Geliştirme

36

2.3.8 Program	Menüsü	

Aşağıda görülen Şekil 2-8’de program menüsüne ait sekmeler yer almaktadır.

	

Şekil 2-8 Program menüsündeki sekmelere ulaşma

Aşağıda verilen Tablo 2-5’te program menüsüne ait sekmelerin açıklamaları
verilmiştir.

Tablo 2-5 Program menüsü sekmelerin açıklamaları (Atzori, 2022)

Değişken değerlerini anlık izleme: Flowgorithm programında algoritma
geliştirildikten sonra değişkenlerin her adım sonrasındaki değerlerini görebilmek
Adım sekmesi ile mümkün olmaktadır. Pencere düzeninden Değişken&Konsol
pencere yapısı seçilerek akış diyagramı adım adım ilerlerken değişkenlerin
değerleri anlık olarak takip edilebilmektedir. Bu sayede hata ayıklama ve analiz

Flowgorithm Uygulaması ile Algoritma Geliştirme 37

işlemi oldukça kolaylaşmaktadır. Şekil 2-9’da değişken değerlerinin izlenmesine
yönelik örnek bir görsel yer almaktadır.

2.3.9 Araçlar	Menüsü		

Şekil 2-10’da araçlar menüsüne yönelik sekmeler yer almaktadır.

	

Şekil 2-10 Araçlar menüsündeki sekmelere ulaşma

Aşağıda verilen Tablo 2-6’da araçlar menüsüne ait sekmelerin açıklamaları
verilmiştir.

Şekil 2-9 Değişken değerlerini anlık izleme

Flowgorithm Uygulaması ile Algoritma Geliştirme

38

Tablo 2-6 Araçlar menüsü sekmelerin açıklamaları (Atzori, 2022)

2.3.10 Yardım	Menüsü	

Şekil 2-11’da yardım menüsüne yönelik sekmeler yer almaktadır.

	

Şekil 2-11 Yardım menüsündeki sekmelere ulaşma

Aşağıda verilen Tablo 2-7’de yardım menüsüne ait sekmelerin açıklamaları
verilmiştir.

Flowgorithm Uygulaması ile Algoritma Geliştirme 39

Tablo 2-7 Yardım menüsü sekmelerin açıklamaları (Atzori, 2022)

2.4 Programlamada	Değişken	Kavramı	

Programlamada değişken kavramı, bir değeri saklamak ve bu değere ihtiyaç
duyulduğunda erişmek için kullanılan temel bir yapıdır. Değişkenler, programın
çalışması boyunca değerleri değiştirilebilen veya güncellenebilen öğelerdir. Her
değişken, programın belleğinde adlandırılmış belirli bir konumda saklanır ve
program tarafından verilen bir adla tanımlanır.

Bir değişkenin kullanılabilmesi için önce tanımlanması gerekir. Tanımlama işlemi,
genellikle değişkenin adının ve türünün belirlenmesiyle yapılır. Değişkenin türü,
hangi türden verileri saklayabileceğini ifade eder. Örneğin, bir değişken tamsayı
değerlerini saklayacaksa tamsayı (integer) türünde, ondalık değerler saklayacaksa
ondalık (float) türünde tanımlanır. Aşağıda verilen Şekil 2-12, bir değişkenin
yapısını göstermektedir.

	

Şekil 2-12 Değişkenin Yapısı

Flowgorithm Uygulaması ile Algoritma Geliştirme

40

2.4.1 Değişken	Türleri	

Flowgorithm programında 4 farklı değişken türü kullanılabilmektedir. Bu değişkenler
ve özellikleri şu şekilde ifade edilmektedir.

Tamsayı (Integer)

• Açıklama: Tamsayılar, ondalık kısmı olmayan tam sayı değerlerini temsil eden
değişken türüdür. Negatif, pozitif veya sıfır olabilirler.

• Örnek: 1, -5, 100, 0.

 Ondalık Sayı (Real)

• Açıklama: Ondalık sayılar, ondalık kısmı bulunan sayıları temsil eden
değişken türüdür. Genellikle reel sayıların saklanmasında kullanılır.

• Örnek: 3.14, -0.5, 2.71828.

Metin Dizisi (String)

• Açıklama: Metin dizileri, karakter veya metinlerden oluşan değerleri saklamak
için kullanılan değişken türüdür. Bu değerler tek tırnak (' ') veya çift tırnak (" ")
içinde yazılır.

• Örnek: "Hello, World!", "Merhaba dünya!", "123".

Mantıksal (Boolean)

• Açıklama: Mantıksal değişkenler, yalnızca iki farklı değer alabilen değişken
türüdür: True veya False. Genellikle koşullu ifadelerde kullanılır.

• Örnek: True, False.

2.4.2 Değişkenlere	İsim	Verme	Kuralları	

Bir işlev veya değişken tanımladığınızda, ona tanımlayıcı adı verilen benzersiz bir ad
verilir. Tanımlayıcıların ifadelerdeki diğer öğelerle karıştırılmaması için belirli
adlandırma kurallarına uyması gerekir. Her programlama dilinin kendine özgü kuralları
olmakla birlikte, bu kurallar genellikle diller arasında büyük ölçüde benzerdir.

Flowgorithm’de tanımlayıcıların aşağıdaki kurallara uygun olması gerekir:

• Bir harfle başlamalıdır.
• İlk harften sonra ek harfler veya rakamlar içerebilir.
• Boşluk içeremez.

Flowgorithm Uygulaması ile Algoritma Geliştirme 41

• Anahtar kelimeler veya Flowgorithm tarafından önceden tanımlanmış
kelimeler kullanılamaz.

Visual Basic ve C gibi bazı dillerde tanımlayıcıların içinde “_” (alt çizgi) karakteri
kullanılabilir; ancak Flowgorithm bu karaktere izin vermez. Ayrıca, Flowgorithm’de
tanımlayıcılar büyük/küçük harf duyarlı değildir. Aşağıdaki Tablo 2-8, bir değişkenin
yapısını göstermektedir.

Tablo 2-8 Değişkenin yapısını veren tablo (Atzori, 2022)

Programlama dillerinde okunabilirliği artırmak amacıyla genellikle class, public veya
if gibi özel sözcükler kullanılır. Bu sözcükler çoğu zaman tanımlayıcıların adlandırma
kurallarıyla benzerlik gösterdiğinden, çakışmaları önlemek için ayrılmış kelime
(reserved word) olarak kabul edilir ve değişken adı olarak kullanılamaz. Ayrıca birçok
programlama dili, bazı fonksiyonları ve sabitleri önceden tanımlar; bu tanımlı ifadeler
de değişken ismi olarak kullanılamaz.

Aşağıda verilen Tablo 2-9’da yer alan kelimeler, değişken adı olarak kullanılamazlar.

Tablo 2-9 Değişken olarak kullanılamayan kelimeler (Atzori, 2022)

Flowgorithm Uygulaması ile Algoritma Geliştirme

42

2.4.3 Değişken	Atama	ve	Değer	Verme	

Değişkenleri atamak ve değer verebilmek için öncelikle değişkeni tipi ile
tanımlamak ve daha sonra klavyeden giriş yapmak veya atama ile bir değere
eşitlemek gerekmektedir.

	 	

 Şekil 2-13 Şekiller menüsü için tıklanması gereken ok

Aşağıda verilen Şekil 2-14, akış diyagramına eklenebilecek sembolleri göstermektedir.

	

Şekil 2-14 Akış diyagramına eklenebilecek semboller

Akış oku üzerinde farenin sağ
tuşuna tıkladığınızda,
ekleyebileceğiniz tüm şekilleri
gösteren bir açılır menü Şekil 2-
13’te olduğu gibi görüntülenir.	

Flowgorithm Uygulaması ile Algoritma Geliştirme 43

Değişkenler sütununun altında yer alan Tanımlama sekmesine
tıklayarak, değişkenimizin türünü belirleyeceğimiz tanımlama
adımını akış diyagramına ekliyoruz (Şekil 2-15). Ardından,
eklediğimiz Tanımlama sekmesine tekrar tıklayarak aşağıdaki
pencerenin açılmasını sağlıyoruz (Şekil 2-16).

 Şekil 2-16 Değişkenin isim ve türünü belirleme ekranı

Bu pencere, değişkenin adını ve türünü belirleyeceğimiz ekrandır. Örneğin,
değişken türü olarak String seçebilir ve değişken adına ilkdegisken yazabilirsiniz.

Akış diyagramımız, Şekil 2-17’da gösterildiği gibi
oluşturulmuştur. Artık değişkenimizin adı ve türü
belirlenmiştir. Son olarak, değişkenin değerini atamak
için yeniden akış okuna tıklıyor ve açılan pencereden
Atama sekmesini seçiyoruz.

Şekil 2-15 Değişken atama

Şekil 2-17 Değişken eklendikten sonra akış şemasındaki görünüm

Flowgorithm Uygulaması ile Algoritma Geliştirme

44

Atama sekmesine tıklayarak Şekil 2-19’de gösterilen
pencerenin açılmasını sağlarız.

Şekil 2-19 Atama ekranında değişkenin değerini değiştirme görüntüsü

Değişken kısmına daha önce belirlediğimiz değişken adını, Açıklama kısmına ise
değişkene vereceğimiz değeri yazıyoruz. Değişkenimiz String türünde olduğu için
değeri yazarken metni mutlaka " " (çift tırnak) işaretleri arasına almaya dikkat
ediyoruz.

Şekil 2-18 Akış şemasına Atama şekli eklendikten sonra oluşan görünüm

Flowgorithm Uygulaması ile Algoritma Geliştirme 45

	

Şekil 2-20 Değişkenin değeri değiştikten sonra oluşan görüntü

	

Şekil 2-21 Akış şemasına çıktı şekli eklenenince oluşan görüntü

Artık değişken için gerekli olan üç adımı
tamamlamış olduk (Şekil 2-20). Son olarak,
değişkenimizin değerini konsol ekranında
görüntülemek istiyoruz. Bunun için akış
diyagramındaki ilgili oka tekrar tıklayarak
özellik penceresini açıyoruz ve Girdi/Çıktı
başlığı altındaki Çıktı sekmesini seçiyoruz
(Şekil 2-21).

Çıktı sekmesine çift tıklayarak Şekil 2-22’de
görülen pencerenin açılmasını sağlıyoruz.

Flowgorithm Uygulaması ile Algoritma Geliştirme

46

	

Şekil 2-22 Çıktı ekranına yazdırmak istenilen bilginin girildiği kısım

Çıktı Özellikleri penceresine değişkenimizin adını yazarak OK sekmesine
tıklıyoruz.

	

Şekil 2-23 Bilgi girildikten sonra akış şemasının görünümü

Artık ilk programımız için her şey
Şekil 2-23’te görüldüğü gibi hazır.
Çalıştır sekmesine tıklayarak
değişkenimizin değerini Şekil 2-
24’te görüldüğü gibi çıktı olarak
görüntüleyebiliriz.

Flowgorithm Uygulaması ile Algoritma Geliştirme 47

	

Şekil 2-24 Program çalıştırıldığında oluşan çıktı

2.5 Değişken	Değer	Bilgisini	Kullanıcıdan	Alma(Input)	

Programlamada input, kullanıcıdan veri almak için kullanılan bir fonksiyondur.
Kullanıcının bir metin, sayı ya da başka bir veri türünü girmesi gerektiğinde input
fonksiyonundan yararlanılır. Örneğin, bir kullanıcıdan adını veya yaşını girmesini
istemek için input fonksiyonu kullanılabilir.

Flowgorithm Uygulaması ile Algoritma Geliştirme

48

	

Şekil 2-25 Değişkenlerin tanımlama görüntüsü

	

Şekil 2-26 Çıktı şeklinin eklenmesi

Kullanıcıdan isim bilgisini almak için, akış şemasında Girdi/Çıktı kategorisi altında
bulunan Input (Girdi) bloğunu şemamıza ekliyoruz (Şekil 2-27). Bu blok
aracılığıyla kullanıcıdan isim bilgisinin girilmesini sağlıyoruz.

Kullanıcının isim ve yaş bilgilerini saklamak
için String (metin) ve Integer (tamsayı)
türlerinde iki farklı değişken tanımlayalım
(Şekil 2-25).

“Kullanıcıdan isim bilgisini almak için
akış şemamıza bir Çıktı (Output) bloğu
ekliyoruz. Bu blokta kullanıcıya Şekil 2-
26’te görüldüğü gibi ‘Lütfen adınızı
giriniz:’ şeklinde bir mesaj göstererek
yönlendirme yapıyoruz.”

Flowgorithm Uygulaması ile Algoritma Geliştirme 49

	

Şekil 2-27 Girdi şeklinin eklenmesi

Girdi bloğuna çift tıklayarak, kullanıcıdan alınacak veriyi tanımlamamızı sağlayan
aşağıdaki pencerenin (Şekil 2-28) açılmasını sağlayalım.

	

Şekil 2-28 Girdi özelliklerinin belirlenmesi

Bu pencerede, kullanıcıdan değer girmesini istediğimiz değişkenin adını yazıyoruz.
Aynı işlemleri yas değişkeni için de yaptıktan sonra akış şemamız Şekil 2-29’deki
gibi oluşmaktadır.

Flowgorithm Uygulaması ile Algoritma Geliştirme

50

	

Şekil 2-29 Girdi girişinden sonra akış şemasındaki görüntü

	

Şekil 2-30 Çıktı şekillerinin eklenmesi

Yandaki program çalıştırıldığında ad ve yas
değişkenlerimize kullanıcı tarafından girilen
değerler atanmış olur. Son adım olarak, bu
bilgileri ekranda gösterebilmek için akış
şemamızın en altına bir Çıktı bloğu ekleyelim
(Şekil 2-30).

Yandaki program çalıştırıldığında
kullanıcıdan ad ve yaş bilgisi istenecek,
ardından bu bilgiler en son ekrana çıktı
olarak yazdırılacaktır (Şekil 2-31).

Flowgorithm Uygulaması ile Algoritma Geliştirme 51

Tüm adımlar tamamlandığında programın konsol çıktısı aşağıdaki Şekil 2-31’daki
gibidir.

	

Şekil 2-31 Program çalıştırıldığında oluşan görüntü

2.6 Operatörler		

Mantıksal operatörler ve karşılaştırma operatörleri, kullanılan programlama diline göre
farklılık gösterir. Flowgorithm, bu çeşitliliği dikkate alarak hem matematikte kullanılan
sembolleri (Unicode karakterleriyle) hem de iki temel programlama dili ailesini
destekler.

• BASIC ailesi, İngilizce anahtar kelimeler ve sözcüksel operatörler içerir.
• C ailesi (C, Java, C# gibi dilleri kapsar) daha sembolik operatörler kullanır.

Flowgorithm hem matematiksel gösterimleri hem de bu iki dil ailesine ait operatörleri
desteklediği için bazı işlemlerin birden fazla yazım biçimi vardır. Program, bu
alternatif gösterimlerin hepsini eşdeğer kabul eder. Böylece öğrenci hangi dili
öğrenmeyi hedefliyorsa o dilin operatör yapısını kullanma özgürlüğüne sahip olur.

Flowgorithm Uygulaması ile Algoritma Geliştirme

52

Tablo 2-10’da Flowgorithm’de kullanılabilen operatörler gösterilmiştir.

Tablo 2-10 Kullanılabilecek operatörler (Atzori, 2022)

Tablo 2-11’de Flowgorithm’de % (mod) ve ^ (üs alma/power) vb. matematiksel
operatörlerin nasıl kullanıldığını, işlem önceliğini ve işlem sonuçlarını gösteren
örnekler yer almaktadır.

Tablo 2-11 Matematik işlem örnekleri (Atzori, 2022)

2.7 İçsel	Fonksiyonlar	

Tablo 2-12’de Flowgorithm’de kullanılan matematiksel fonksiyonlar ve
fonksiyonların anlamı yer almaktadır. Fonksiyonlarda 𝑛 değişkeninin içine yazılan
değer üzerinden işlemler yapılmaktadır.

	

Flowgorithm Uygulaması ile Algoritma Geliştirme 53

Tablo 2-12 Matematik formülleri (Atzori, 2022)

Aşağıdaki Tablo 2-13, string türündeki değişkenlerde kullanılabilen fonksiyonları
ve fonksiyonların anlamını göstermektedir.

Tablo 2-13 String tipi değişken fonksiyonları (Atzori, 2022)

Tablo 2-14’te dosya okumak, rastgele sayı üretmek, dizinin boyutu öğrenmek ve
değişkenler arasındaki dönüşümleri yapabilmek için gerekli olan fonksiyonlar ve
fonksiyonların anlamı verilmiştir.

Flowgorithm Uygulaması ile Algoritma Geliştirme

54

Tablo 2-14 Dönüşüm fonksiyonları (Atzori, 2022)

2.8 Yerleşik	Sabitler		

Flowgorithm, yaygın olarak kullanılan üç sabiti tanımlar. True ve False sabitleri
genellikle Boolean türündeki değişkenleri başlatmak için kullanılır. Pi sabiti ise
matematiksel işlemlerde sıkça başvurulan bir sabittir. Aşağıdaki Tablo 2-15, bu
sabitlere ilişkin bilgileri içermektedir.

Tablo 2-15 Sabitler (Atzori, 2022)

Flowgorithm Uygulaması ile Algoritma Geliştirme 55

2.9 Değişken	Uygulaması	Örneği	(Dairenin	Çevre	ve	
Alanını	Hesaplama)	

Flowgorithm’de değişken tanımlamak ve değişkenlere değer vermeyi daha
anlayabilmek için aşağıdaki örnek uygulama incelenebilir.

	

Şekil 2-32 Dairenin çevre ve alanını hesaplayan algoritma

Yandaki akış şemasında, integer türünde bir r
değişkeni ile reel sayı türünde cevre ve alan
değişkenleri tanımlanmıştır. r değişkenine 5 değeri
atanmış, cevre ve alan değişkenlerinin değerleri ise
ilgili formüllere uygun şekilde hesaplanmıştır (Şekil 2-
32). Son olarak, string birleştirme operatörü (&)
kullanılarak çevre ve alan değerleri konsol ekranına
yazdırılmıştır (Şekil 2-33).	

Şekil 2-33 Program çalıştığında oluşan çıktı

Flowgorithm Uygulaması ile Algoritma Geliştirme

56

3 Bölüm	
3.1 Kontrol	Yapıları	(If)	

Kontrol ve karar yapıları programlama ve dolayısı ile algoritmalar için olmazsa
olmazdır. Döngü yapılarının içinde de mutlaka kontrol ifadeleri bulunmaktadır.
Kontrol yapıları sayesinde istenen koşullara uygun bloklar çalıştırılabilmektedir.
Şekil 3-1, Flowgorithm’de kullanılan if yapısını göstermektedir.

	

Şekil 3-1Kontrol yapısı (Atzori, 2022)

Programlama terimlerinde if yapısı, bir programın belirli bir koşula bağlı olarak
farklı davranışlar sergilemesini sağlayan temel kontrol yapılarından biridir. If
ifadesi, verilen koşulu değerlendirir; koşul doğru olduğunda ilgili kod bloğunu
çalıştırır. Koşul yanlış ise bu kod bloğu atlanır veya alternatif bir işlem
gerçekleştirilir.

Şekil 3-2’ de verilen akış şemasında x adında bir değişken tanımlanmıştır. Bu
değişkenin değeri kullanıcıdan alınmış ve şemaya bir if bloğu eklenmiştir. Orta
kısımdaki koşul ifadesine x MOD 2 == 0 yazılmıştır. Bu ifade, kullanıcının girdiği
sayının 2’ye bölümünden kalanını kontrol eder.

Flowgorithm Uygulaması ile Algoritma Geliştirme 57

	

Şekil 3-2 Tek-çift sayıların ayrımını yapan algoritma

Eğer kalan 0 ise akış şeması sağ taraftan devam ederek ‘Sayınız çift’ çıktısını üretir;
kalan 0 değilse akış sol taraftan ilerleyerek ‘Sayınız tek’ ifadesi konsol ekranına
yazdırılır (Şekil 3-3).

	

Şekil 3-3 Program çalıştırıldığında oluşan çıktı

Flowgorithm Uygulaması ile Algoritma Geliştirme

58

3.1.1 If	Uygulaması	Örneği	(Öğrenicinin	karne	notuna	göre	
başarı	durumu)	

Verilen akış şemasında (Şekil 3-4) kullanıcıdan karne notu bilgisi alınmıştır. Eğer
not 85’ten büyük veya 85’e eşit ise program sağ taraftan ilerleyerek çıktı olarak
‘İyi’ ifadesini üretmiştir. Not 85’ten küçükse akış sol tarafa yönelmiş ve ikinci bir
kontrol adımına geçilmiştir. Bu aşamada notun belirli bir aralıkta olup olmadığı
değerlendirilmiştir. Not bu aralıkta ise akış sağ taraftan devam ederek ‘Orta’ çıktısı
verilmiştir. Not belirtilen aralığa uymuyorsa akış sol taraftan ilerlemiş ve çıktı
olarak ‘Kötü’ ifadesi yazdırılmıştır.

	

	

Şekil 3-4 Başarı durumunu belirleyen algoritma

Flowgorithm dosyasına ulaşmak için karekodu
okutunuz.

Flowgorithm Uygulaması ile Algoritma Geliştirme 59

3.1.2 Vücut	Kitle	Indexi	Hesaplayan	Program	

Kullanıcıdan kilo (kilogram) ve boy (metre) bilgileri alınarak VKİ = kilo / (boy ×
boy) formülüne göre bir akış diyagramı oluşturabilirsiniz. Karar koşulları şu şekilde
değerlendirilecektir: VKİ > 40 ise ‘3. derece obezite’, 30 < VKİ ≤ 40 ise ‘2. derece
obezite’, 20 < VKİ ≤ 30 ise ‘1. derece obezite’, 10 < VKİ ≤ 20 ise ‘ortalama kilo’,
VKİ ≤ 10 ise ‘sağlıklı kilo’. Aşağıda verilen bağlantıda programın PDF çıktısı
bulunmaktadır:

https://drive.google.com/file/d/1o0w5bHze-S-G4qETF9Ln0oUJ40SWuvQN/view

3.2 For	Döngüsü	

Şekil 3-5, Flowgorithm’de kullanılan for döngüsünün yapısını göstermektedir.

	

Şekil 3-5 For döngü şeması (Atzori, 2022)

For döngüsü, programlamada tekrar eden işlemleri gerçekleştirmek için kullanılan
temel kontrol yapılarından biridir. Genellikle bir dizi üzerindeki elemanları işlemek
veya belirli bir koşul sağlandığı sürece aynı kod bloğunu yinelemek amacıyla
kullanılır. Bir for döngüsü, çoğunlukla başlangıç değeri, bitiş değeri ve artış miktarı
gibi parametrelerin tanımlanmasıyla başlatılır.

Flowgorithm dosyasına ulaşmak için kodu okutunuz:

https://drive.google.com/file/d/1o0w5bHze-S-G4qETF9Ln0oUJ40SWuvQN/view

Flowgorithm Uygulaması ile Algoritma Geliştirme

60

	

Şekil 3-6 For döngüsünün şemaya eklenmesi

	

Şekil 3-7 Döngünün özelliklerinin belirlenmesi

Açılan pencerede döngünün işlem yapacağı değişken i olarak belirlenmiştir.
Başlangıç değeri 0, bitiş değeri ise 10 olarak ayarlanmıştır. Artan bir döngüde, her
adımda i değişkeninin değeri 1 artacaktır.

Yanda verilen akış şemasında (Şekil 3-6) integer
türünde bir i değişkeni tanımlanmış ve hemen altına
bir for döngüsü eklenmiştir. For ifadesinin bulunduğu
alana çift tıklanarak aşağıda gösterilen pencere
açılmaktadır (Şekil 3-7).

Flowgorithm Uygulaması ile Algoritma Geliştirme 61

	

Şekil 3-8 Döngü eklenince oluşan akış şeması

	

Şekil 3-9 Program çalıştırıldığına oluşan çıktı

Şekil 3-8’de görülen akış şemasında program
toplam 11 kez çalışacak; her döngü adımında i
değişkeninin değeri 1 artırılarak konsol
ekranına yazdırılacaktır. Programın çıktısı
alındığında konsol ekranı Şekil 3-9’daki gibi
görünür.

Flowgorithm Uygulaması ile Algoritma Geliştirme

62

3.2.1 Örnek	 for	 döngüsü	 uygulaması	 (1’den	 n’ye	 kadar	 olan	
sayıları	toplayan	program)	

Şekil 3-10’da belirli bir sayıya kadar girilen sayıların toplamını veren algoritma
görülmektedir.

	

Şekil 3-10 Belirli bir sayıya kadar girilen sayıların toplamını veren algoritma

1. İlk olarak toplam ve n adlı iki değişken
tanımlanır; toplam değişkeni başlangıçta sıfıra
eşitlenir.
2. Kullanıcıya “Hangi sayıya kadar olan sayıların
toplamını istiyorsunuz?” şeklinde bir mesaj
gösterilir ve kullanıcının girdiği değer n
değişkenine atanır.
3. Ardından, bir for döngüsü kullanılarak 0’dan
başlayıp n değerine kadar olan sayılar üzerinde
iterasyon yapılır.
4. Her iterasyonda mevcut sayı toplam değişkenine
eklenir.
5. Döngü tamamlandığında toplam değişkeninin
son değeri ekrana yazdırılır.
İterasyon, bir döngü içindeki her bir tekrar veya
adımdır. Döngüler programlamada belirli bir işlemi,
belirli bir koşul sağlanana kadar ya da belirli bir
aralık boyunca tekrar etmek amacıyla sıkça
kullanılır.

Flowgorithm dosyasına ulaşmak için kodu okutunuz.

Flowgorithm Uygulaması ile Algoritma Geliştirme 63

3.2.2 Örnek	For	Uygulaması	2(Mükemmel	Sayıyı	Bulan	
Program)	

Matematikte, kendisi hariç pozitif bölenleri toplamı sayının kendisine eşit olan sayılara
mükemmel sayılar denir. Örneğin 6 sayısının kendisi hariç pozitif bölenleri 1, 2 ve
3’tür; çünkü 1 + 2 + 3 = 6olduğundan 6 bir mükemmel sayıdır.

Aşağıdaki akış şeması, kullanıcıdan bir sayı alıp bu sayının mükemmel sayı olup
olmadığını kontrol eden bir programı göstermektedir. Yapılacak işlemler adım adım
şöyledir:

1. sayi, carpanToplam ve sayac adlarında üç adet integer değişken tanımlanır.
Başlangıçta carpanToplam değişkenine 0 değeri atanır. Bu değişken, sayının
bölenlerinin toplamını tutacaktır.

2. Kullanıcıya ‘Lütfen bir sayı giriniz.’ mesajı gösterilir.

3. Kullanıcının girdiği değer alınarak tam sayıya dönüştürülür ve sayi değişkenine
atanır.

4. Bir for döngüsü oluşturulur. Bu döngü, 1’den başlayarak kullanıcının girdiği sayının
yarısına kadar devam eder. Çünkü bir sayının, kendisinden büyük bir pozitif böleni
olamayacağı için bu aralık yeterlidir.

5. Döngü içerisinde, sayi değişkeninin sayac değişkenine tam bölünüp bölünmediği
kontrol edilir. Kalan sıfır ise sayac, sayi’nın bir bölenidir.

6. Her bulunan bölen, carpanToplam değişkenine eklenir. Böylece sayının bölenleri
toplamı elde edilir.

7. Döngü tamamlandıktan sonra carpanToplam ile sayi karşılaştırılır. Eğer bu iki değer
eşitse kullanıcıdan alınan sayı bir mükemmel sayıdır.

8. Eğer sayı mükemmel bir sayı ise ekrana ‘Tebrikler, girmiş olduğunuz sayı bir
mükemmel sayıdır.’ mesajı yazdırılır.

9. carpanToplam ile sayi eşit değilse kullanıcının girdiği sayının mükemmel sayı
olmadığı belirlenir.

10. Bu durumda ekrana ‘Maalesef, girmiş olduğunuz sayı bir mükemmel sayı değildir.’
mesajı yazdırılır.

Flowgorithm Uygulaması ile Algoritma Geliştirme

64

Bu adımları izleyerek kullanıcıdan alınan bir sayının mükemmel olup olmadığını
kontrol eden bir akış şeması oluşturmanız gerekmektedir. Aşağıdaki bağlantıyı
tıklayarak programın PDF çıktısına ulaşabilirsiniz.

https://drive.google.com/file/d/1CS4JkA50ooudmz7uoTjONfwn5ur3vnc4/view?us
p=drive_link

3.3 While	Döngüsü		

Şekil 3-11, Flowgorithm de yer alan while döngüsünün yapısını göstermektedir.

	

Şekil 3-11 while döngü şeması (Atzori, 2022)

While döngüsü, programlamada belirli bir koşul sağlandığı sürece bir kod bloğunun
tekrar tekrar çalıştırılmasını sağlayan bir kontrol yapısıdır. Bu döngüde koşul, her
döngü adımının başında değerlendirilir ve koşul doğru olduğu sürece döngü
içindeki işlemler yürütülür. Koşul yanlış olduğunda ise döngü sona erer.

Flowgorithm dosyasına ulaşmak için kodu okutunuz.

https://drive.google.com/file/d/1CS4JkA50ooudmz7uoTjONfwn5ur3vnc4/view?usp=drive_link
https://drive.google.com/file/d/1CS4JkA50ooudmz7uoTjONfwn5ur3vnc4/view?usp=drive_link

Flowgorithm Uygulaması ile Algoritma Geliştirme 65

	

Şekil 3-12 While döngüsünün şemaya eklenmesi

	

Şekil 3-13 Döngü özelliklerinin belirlenmesi

Açılan pencereye, devamEdilsinMi değişkeni True olduğu sürece döngünün devam
etmesi için devamEdilsinMi == true ifadesi yazılmıştır.

Şekil 3-12’de görülen akış şemasında Boolean
türünde devamEdilsinMi adında bir değişken
tanımlanmış ve başlangıç değeri True (doğru)
olarak ayarlanmıştır. Ayrıca integer türünde i
değişkeni tanımlanmış ve değeri 0 olarak
belirlenmiştir.
Gelecek örnekte, kullanıcı devamEdilsinMi
değişkenini False (yanlış) yapana kadar i
değişkenine her adımda 1 ekleyen bir program
oluşturacağız. While bloğuna çift tıklanarak şekil
3-13’te görülen pencere açılır.

Flowgorithm Uygulaması ile Algoritma Geliştirme

66

Daha sonra Şekil 3-14’te görüldüğü gibi while döngüsünün içine i = i + 1 ifadesi
yazılarak i değişkeninin değeri her döngü adımında 1 artırılmıştır. Sonraki adımda
i değeri konsol ekranına yazdırılır. Ardından kullanıcıya ‘Devam edilsin mi?’
şeklinde bir soru yöneltilir ve konsola true veya false yazması istenir.

Kullanıcının girdiği bu değer, input komutu ile devamEdilsinMi değişkenine atanır.
Kullanıcı true yazdığı sürece döngü devam eder ve i değişkeni her seferinde 1
artırılarak ekrana yazdırılır. Kullanıcı false yazdığı anda döngü sonlanır ve konsol
ekranına ‘While döngüsü bitti.’ mesajı yazdırılır.

	

Şekil 3-14 Döngü eklendikten sonra oluşan görüntü

Program çalıştırıldığında, kullanıcı birkaç kez konsol ekranına true girdikten sonra
false girdiğinde, konsol ekranı Şekil 3-15’teki gibi görüntülenir.

Flowgorithm Uygulaması ile Algoritma Geliştirme 67

	

Şekil 3-15 Program çalıştırıldıktan sonra oluşan görüntü

3.3.1 While	Döngüsü	Örneği(Asal	Çarpanları	Bulma	

Uygulaması)	

	

Şekil 3-16 Asal çarpan algoritması 1. kısım

Şekil 3-16’da görülen akış şemasında, kullanıcının
girdiği sayının asal çarpanlarını bulan ve bu çarpanların
toplamını hesaplayan programın adım adım açıklaması
şunlardır:

1. bolen = 2, toplam = 0 ve birOncekiBolen = 0
değişkenleri tanımlanır. Bu değişkenler, asal
çarpanları ve bunların toplamını tutmak için
kullanılacaktır.

2. Kullanıcıdan bir sayı girmesi istenir ve girilen
değer sayi değişkenine atanır.

Flowgorithm Uygulaması ile Algoritma Geliştirme

68

Şemanın devamında Şekil 3-17’de görüldüğü gibi bir while döngüsü tanımlanır ve
sayi değişkeni 1’den büyük olduğu sürece döngü çalışır.

	

Şekil 3-17 Asal çarpan algoritması 2. kısım

Akış diyagramının adım adım çalışma açıklaması aşağıdaki gibidir:

1. While döngüsü, sayi 1’den büyük olduğu sürece devam eder; bu, sayının tüm
asal çarpanlarını bulmak için gerekli bir döngü sağlar.

2. Döngü içinde, sayi değişkeninin bolen ile tam bölünüp bölünmediği kontrol
edilir (sayi % bolen == 0). Bölünüyorsa, bolen sayının bir asal çarpanıdır.

3. Sayi, bolen ile bölünerek güncellenir; böylece sayının değeri küçülür ve
kalan asal çarpanlar üzerinde işlem yapılabilir.

4. Eğer bolen, bir önceki bölenden farklıysa, yeni bir asal çarpan bulunmuş
demektir. Bu çarpan toplam değişkenine eklenir ve ekrana yazdırılır.

5. birOncekiBolen değişkeni, bolen değeriyle güncellenir; böylece bir sonraki
iterasyonda bir önceki asal çarpan hatırlanmış olur.

6. Eğer sayi, bolen ile tam bölünmüyorsa, else bloğu çalışır ve bolen bir
artırılır; bu, bir sonraki olası asal çarpanı kontrol etmek için yapılır.

Flowgorithm Uygulaması ile Algoritma Geliştirme 69

7. While döngüsü, sayi 1 veya daha küçük olduğunda sona erer; böylece tüm
asal çarpanlar bulunmuş olur.

8. Son olarak, bulunan asal çarpanların toplamı toplam değişkeninden alınır ve
ekrana yazdırılır.

Program çalıştırıldığında konsol ekranı Şekil 3-18’de olduğu gibi gibi
görüntülenir.

	

Şekil 3-18 Asal çarpan algoritması çıktı

Flowgorithm dosyasına ulaşmak için kodu okutunuz.

Flowgorithm Uygulaması ile Algoritma Geliştirme

70

3.3.2 While	Döngüsü	Örneği	(Ebob	bulma)	

Matematikte, EBOB (En Büyük Ortak Bölen) bulmak için iki sayının bölenleri ayrı
ayrı bulunup, ortak olan en büyük bölen seçilebilir. Alternatif bir yöntem ise, iki
sayıyı birbirine eşit olana kadar büyük olandan küçük olanı çıkarmaktır; iki sayı eşit
olduğunda bu sayı EBOB olur. Örneğin:

• Sayı1 = 9, Sayı2 = 6 olsun.
• Sayı1 > Sayı2 olduğu için Sayı1 = Sayı1 – Sayı2 ⇒ Sayı1 = 9 – 6 = 3 olur.
• Sayı1 = 3 ve Sayı2 = 6 olduğunda Sayı2 > Sayı1 olduğundan Sayı2 = Sayı2

– Sayı1 ⇒ Sayı2 = 6 – 3 = 3 olur.
• Son durumda Sayı1 = 3 ve Sayı2 = 3 olduğundan EBOB(9, 6) = 3 olur.

Bu kurala uygun bir akış şeması adım adım şöyle oluşturulabilir:

1. Kullanıcıdan “Lütfen EBOB hesaplanmasını istediğiniz 1. sayıyı giriniz.”
mesajı ile sayı alınır ve sayi1 değişkenine atanır.

2. Kullanıcıdan “Lütfen EBOB hesaplanmasını istediğiniz 2. sayıyı giriniz.”
mesajı ile sayı alınır ve sayi2 değişkenine atanır.

3. Bir while döngüsü başlatılır; bu döngü, sayi1 ve sayi2 birbirine eşit olana
kadar devam eder. Yani, iki sayının EBOB’u bulunana kadar çalışır.

4. Döngü sırasında iki sayının farklı olup olmadığı kontrol edilir. Eğer sayi1 >
sayi2 ise, sayi1 = sayi1 – sayi2 işlemi yapılır. Eğer sayi2 > sayi1 ise, sayi2
= sayi2 – sayi1 işlemi uygulanır.

5. Döngü, iki sayı birbirine eşit olduğunda sona erer; bu noktada sayi1 ve sayi2
aynı değerdedir ve bu değer EBOB’u temsil eder.

6. Son olarak, "EBOB: " & sayi2 ifadesi ile EBOB değeri ekrana yazdırılır;
EBOB, sayi2 değişkeninde bulunur ve bir dizeye dönüştürülerek kullanıcıya
gösterilir.

Oluşturulan şemanın linki: https://drive.google.com/file/d/1gYFmn1k-
GCRacbHo8HmfA3XJWRBycbMz/view?usp=drive_link

Flowgorithm dosyasına ulaşmak için kodu okutunuz.

https://drive.google.com/file/d/1gYFmn1k-GCRacbHo8HmfA3XJWRBycbMz/view?usp=drive_link
https://drive.google.com/file/d/1gYFmn1k-GCRacbHo8HmfA3XJWRBycbMz/view?usp=drive_link

Flowgorithm Uygulaması ile Algoritma Geliştirme 71

3.4 DO	Döngüsü	

Aşağıda bulunan Şekil 3-19, Flowgorithm’de kullanılan do döngüsünün yapısını
göstermektedir.

	

Şekil 3-19 Do döngü şeması (Atzori, 2022)

DO döngüsü, çalışma prensibi açısından while döngüsüne benzer. Ancak temel fark
şudur: While döngüsünde koşul sağlanmazsa döngü bloğuna hiç girilmezken, DO
döngüsünde döngü bloğu en az bir kez çalıştırılır. Döngü bloğu çalıştıktan sonra
koşul kontrol edilir; koşul doğru ise döngü çalışmaya devam eder, yanlış ise döngü
sona erer.

Aşağıda verilen akış şemasında (Şekil 3-20), i tamsayısının değeri 0 olarak
atanmıştır. DO döngüsünde koşul, i 0’dan büyük olduğu sürece döngünün devam
etmesi şeklinde belirlenmiştir. Koşul sağlanmasa bile döngü bloğu bir kez
çalıştırılır ve hemen ardından döngüden çıkılır. Program çalıştırıldığında konsol
ekranı Şekil 3-21’de olduğu gibi görüntülenir.

Flowgorithm Uygulaması ile Algoritma Geliştirme

72

	

Şekil 3-20 DO döngsünün akış şemasına eklenmesi

Do döngüsü, kullanıcıdan istenilen bilgiyi belirli kurallara göre girmediği sürece
tekrar tekrar istemek için kullanılabilir. Döngüye bir kez girmesi, bu durumda
büyük bir avantaj sağlar. Örneğin, kullanıcıdan yaşını istediğimiz bir uygulamada,
kullanıcının yalnızca 7 ile 99 arasında bir değer girmesi kabul edilsin; yanlış bir
değer girildiğinde do döngüsü devreye girerek doğru değer girilene kadar
kullanıcıdan tekrar bilgi alır.

Aşağıda verilen program (Şekil 3-22) incelendiğinde, kullanıcı 7 ile 99 arasındaki
bir sayı girene kadar döngü devam eder. Kullanıcı istenilen aralıkta bir değer
girdiğinde döngü sona erer ve program ‘Yaşınız kaydedildi.’ mesajını ekrana
yazdırarak tamamlanır.

Şekil 3-21 Program çalıştırıldığında oluşan çıktı

Flowgorithm Uygulaması ile Algoritma Geliştirme 73

	

Şekil 3-22 Do döngüsü algoritma örneği

Flowgorithm Uygulaması ile Algoritma Geliştirme

74

4 Bölüm	
4.1 DİZİLER	

Aynı türden verileri belirli bir düzen içinde saklamak için kullanılan yapılar dizi
(array) olarak adlandırılır. Diziler tanımlanırken, kaç eleman depolayacakları ve
boyutları genellikle tanımlama aşamasında belirtilir. Dizideki her bir elemana
erişim için indis kullanılır ve indisler her zaman 0’dan başlar.

Şimdi, tanımlama sekmesine tıklayarak Şekil 4-1’de görülen pencereyi açalım.

	

Şekil 4-1 Dizi Tanımlama Ekranı

Verilen pencerede veri tipi olarak String seçilir. Ardından Dizi sekmesine
tıklandığında, hemen altında dizinin boyutunu girebileceğiniz bir alan açılır.
Dizimizin kaç elemanlı olacağını bu alana girip OK düğmesine tıklıyoruz.

Flowgorithm Uygulaması ile Algoritma Geliştirme 75

	

Şekil 4-2 Tanımlanmış dizinin akış şemasındaki görünümü

	

Şekil 4-3 Dizinin belirli bir elamanının değerini belirleme

Değişken olarak dizimizin ismini ve atama yapılacak indisi köşeli parantez [] içinde
belirtiyoruz. Örneğin, 0. indise ‘Dizinin 1. elemanı’ değerini atamak için
stringDizisi[0] = "Dizinin 1. elemanı" şeklinde yazıyoruz ve ardından OK
düğmesine tıklıyoruz.

Şekil 4-2’de görüldüğü gibi 4 elemanlı dizimiz akış
şemasına eklenmiştir. Artık dizinin elemanlarına
değer atayabiliriz. Atama ekranına giderek aşağıda
verilen pencereyi (Şekil 4-3) açıyoruz.

Flowgorithm Uygulaması ile Algoritma Geliştirme

76

	

Şekil 4-4 Dizi şekilleri eklendikten sonra oluşan akış şemasının görüntüsü

Konsol ekranında çıktı olarak ‘Dizinin 1. Elemanı’ ifadesini aldık. Böylece stringDizisi
dizimizin 0. indisi belirlenmiş oldu.

4.1.1 Dizi	Örneği	1	(Rakamları	dizinin	elemanı	yapan	program)		

Aşağıda yer alan Şekil 4-5, rakamları dizinin elemanı yapan algoritmanın akış
diyagramını göstermektedir. 	

Şekil 4-5 Rakamları dizinin elemanı yapan akış şeması

Son olarak, dizimizin ilk elemanını ekrana
yazdırmak için Şekil 4-4’te görüldüğü gibi akış
şemasına çıktı olarak stringDizisi[0] ifadesini
ekleyelim ve programı çalıştıralım.

Flowgorithm Uygulaması ile Algoritma Geliştirme 77

Yukarıda verilen akış şemasında sayiDizisi[10] olarak boyutu 10 olan bir tam sayı
dizisi tanımlanmıştır. Dizinin elemanlarını atarken for döngüsünden
yararlanılmıştır; döngü 0’dan 9’a kadar birer birer artmaktadır.

SayiDizisi[i] = i + 1 ifadesiyle, her döngü adımında i değeri kullanılarak dizinin
ilgili indisine (yani i’inci indise) i + 1 değeri atanır. i’nin değeri 0’dan başladığı
için, i + 1 işlemi sayesinde diziye 1’den başlayarak 10’a kadar olan sayılar
yerleştirilmiş olur.

Son olarak, her bir sayı diziye atandıktan sonra, o anki i değerine karşılık gelen dizi
elemanı konsol ekranına yazdırılır.

4.1.2 Dizi	Örneği	2	(Kullanıcıdan	Alınan	5	farkı	sayıyı	sıralayan	
program)	

Aşağıda Şekil 4-6’da görülen akış şeması incelendiğinde, adım adım yapılan
işlemler şemanın altında açıklanmıştır.

Flowgorithm dosyasına ulaşmak için kodu okutunuz.

Flowgorithm Uygulaması ile Algoritma Geliştirme

78

Şekil 4-6 Beş farklı sayıyı sıralayan algoritma örneği

1. sayilar[5]: sayilar adında bir liste oluşturulur ve başlangıçta beş elemanı sıfır
olan bir liste olarak tanımlanır. Yani, [0, 0, 0, 0, 0] şeklinde bir liste oluşur.

2. 1. For döngüsü: Bu döngü, kullanıcıdan beş adet sayı girişi alır. l değişkeni
0’dan 4’e kadar değerler alır; yani döngü beş kez çalışır.

3. Çıktı("Lütfen " & l + 1 & ". sayıyı giriniz: "): Her döngü adımında
kullanıcıya hangi sıradaki sayıyı girmesi gerektiği sorulur. l + 1 ifadesi,

Flowgorithm Uygulaması ile Algoritma Geliştirme 79

insanların saymaya 1’den başladığını dikkate alır ve sayının kaçıncı
olduğunu gösterir.

4. Giriş sayilar(l): Kullanıcıdan alınan değer, l değişkenine göre sayilar
listesinin ilgili indeksine atanır.

5. 2. ve 3. For döngüsü: Bu döngüler, kabarcık sıralama algoritması
kullanılarak girilen sayıları küçükten büyüğe doğru sıralar. İç içe iki döngü,
liste elemanlarını karşılaştırır ve gerekirse yer değiştirir.

6. if sayilar[j] > sayilar[j + 1]: Listenin ardışık elemanları karşılaştırılır. Eğer
bir önceki eleman bir sonraki elemandan büyükse, yer değişimi yapılır.

7. 4. For döngüsü (0, 4 + 1, 1): Son olarak, sıralanmış sayılar Şekil 4-7’de
olduğu gibi ekrana yazdırılır. Bu döngü sayesinde sıralı liste konsola basılır.
Benzer şekilde, k + 1 ifadesi, insanların saymaya 1’den başladığını dikkate
alır ve sayının kaçıncı olduğunu gösterir.

	

Şekil 4-7 Programın çıktısı

Flowgorithm dosyasına ulaşmak için kodu okutunuz.

Flowgorithm Uygulaması ile Algoritma Geliştirme

80

4.1.3 Dizi	Örneği	3	(Kullanıcının	Girdiği	En	Büyük	Sayıyı	Bulan	
Program)	

Şimdi, kullanıcıdan alınan 5 sayıyı bir dizide saklayan ve bu sayılardan en
büyüğünü belirleyen bir programı oluşturmak için aşağıdaki adımları takip
edebilirsiniz:

1. sayi[5] adında bir liste oluşturulur ve başlangıçta beş elemanı sıfır olan bir
liste olarak tanımlanır. Yani, [0, 0, 0, 0, 0] şeklinde bir liste oluşur.

2. Tamsayı türünde i, enb ve sayici değişkenleri tanımlanır.
3. enb = 0: enb değişkeni, en büyük sayıyı takip etmek için kullanılır ve

başlangıçta 0 değeri atanır.
4. for (0…4, 1): Bu döngü, kullanıcıdan beş adet sayı girişi alır. i değişkeni

0’dan 4’e kadar değerler alır (5 hariç). Döngü beş kez çalışır.
5. Çıktı(i + 1 & ". sayıyı giriniz"): Her döngü adımında, kullanıcıya hangi

sıradaki sayıyı girmesi gerektiği sorulur. i + 1 ifadesi, insanların saymaya
1’den başladığını dikkate alır.

6. Giriş sayi[i]: Kullanıcıdan alınan değer, i değişkenine göre sayi listesinin
ilgili indeksine atanır.

7. for (0…4, 1): Yeni bir döngü tanımlanır. Bu döngü, girilen sayılar içinden
en büyük olanı bulmak için kullanılır. i değişkeni 0’dan 4’e kadar değerler
alır (5 hariç). Döngü beş kez çalışır.

8. if enb < sayi[i]: Listenin her elemanı, enb değişkenindeki en büyük sayı ile
karşılaştırılır. Eğer listenin elemanı enb’den büyükse, enb değişkeni bu
elemana eşitlenir (enb = sayi[i]).

9. sayici = i + 1: sayici değişkeni, en büyük sayının kaçıncı sırada olduğunu
gösterir. i + 1 ifadesi, insanların saymaya 1’den başladığını dikkate alır.

10. Çıktı("Girdiğiniz sayılar içerisinde en büyük sayı " & sayici & ". sayı olan "
& enb & " sayısıdır."): En büyük sayı ve sırası ekrana yazdırılır.

İstenen programın akış diyagramına aşağıdaki bağlantıdan ulaşılabilir:

https://drive.google.com/file/d/1bmQU0mP0Kee9nLVc22LQTvz9sBe8ml7E/view
?usp=drive_link

Verilen linke tıklayarak programın pdf şemasına ulaşabilirsiniz.

Flowgorithm dosyasına ulaşmak için kodu okutunuz.

https://drive.google.com/file/d/1bmQU0mP0Kee9nLVc22LQTvz9sBe8ml7E/view?usp=drive_link
https://drive.google.com/file/d/1bmQU0mP0Kee9nLVc22LQTvz9sBe8ml7E/view?usp=drive_link

Flowgorithm Uygulaması ile Algoritma Geliştirme 81

5 Bölüm	
5.1 Fonksiyonlar	

Programlamada bir işlev veya fonksiyon, belirli bir görevi yerine getiren ve bir veya
birden fazla girdi alarak bir çıktı üreten kod bloğudur. Fonksiyonlar, kodun modüler
hâle getirilmesi ve tekrar kullanılabilirliğinin artırılması açısından önemlidir. Bir
fonksiyon genellikle bir isimle çağrılır ve fonksiyon bloğu içinde tanımlanır.

	

Şekil 5-1 Fonksiyon uygulaması Akış şeması 1. kısım

	

Şekil 5-2 Fonksiyon uygulaması Akış şeması 2. kısım

Şekil 5-1’de görüldüğü gibi, kullanıcıdan
iki sayı almak için sayi1 ve sayi2 adında
tamsayı değişkenleri tanımlanmış ve Giriş
ile kullanıcıdan değerleri alınmıştır.

Daha sonra Şekil 5-
2’daegörüldüğü gibi Ana
sekmesinin altında yer alan
New Function sekmesine
tıklayarak aşağıda verilen
pencereyi açıyoruz.

Flowgorithm Uygulaması ile Algoritma Geliştirme

82

	

Şekil 5-3 Fonksiyon uygulaması Akış şeması 3. Kısım

Aşağıda	 verilen	 Şekil	 5-4	 fonksiyon	 parametrelerinin	 ekleneceği	 pencereyi	
göstermektedir.	

	

Şekil 5-4 Fonksiyon uygulaması Akış şeması 4. kısım

Parametre olarak iki farklı tamsayı ekleyelim; bu tamsayılar a ve b olsun.
Parametreleri belirledikten sonra fonksiyon penceremiz Şekil 5-5’deki gibi olur.

Açılan pencerede, sol tarafta
bulunan Ekle kısmına
tıklayarak fonksiyonumuzun
parametrelerini
ekleyeceğimiz pencereyi
Şekil 5-3’de görebilirsiniz.

Flowgorithm Uygulaması ile Algoritma Geliştirme 83

	

Şekil 5-5 Fonksiyon uygulaması Akış şeması 5. kısım

OK sekmesine tıkladıktan sonra, üst sekmedeki ana ekranda fonksiyonumuzun adı
Şekil 5-6’te olduğu gibi topla olarak değişecektir.

	

Şekil 5-6 Fonksiyon uygulaması Akış şeması 6. kısım

Artık, topla fonksiyonunda yapılacak
işlemleri buradan düzenleyebiliriz.

Flowgorithm Uygulaması ile Algoritma Geliştirme

84

	

Şekil 5-7 Fonksiyon uygulaması Akış şeması 7. kısım

Artık topla fonksiyonunda işimiz tamamlandı. Bu fonksiyonu çalıştırmak için üst
sekmedeki topla kısmına tıklayarak burayı ana fonksiyonumuzla değiştiriyoruz
(Şekil 5-8).

	

Şekil 5-8 Fonksiyon uygulaması Akış şeması 8. kısım

Şekil 5-7’te görüldüğü gibi topla
fonksiyonunun içinde topla adında bir
tamsayı değişkeni tanımladık. Daha
sonra girilen a ve b sayılarının toplamını
topla değişkenine atadık. Son olarak, 1.
sayı a, 2. sayı b ve topla değişkeninin
değeri ekrana çıktı olarak yazdırıldı.

Flowgorithm Uygulaması ile Algoritma Geliştirme 85

Şekil 5-9 Fonksiyon uygulaması Akış şeması 9. Kısım

	

	

Şekil 5-10 Fonksiyon uygulaması Akış şeması 10. kısım

Şekil 5-10’da görülen pencerede, topla fonksiyonunu çağırmak ve kullanıcıdan
alınan sayi1 ile sayi2 değişkenlerini toplamak için topla (sayi1, sayi2) yazıyoruz ve
ardından OK sekmesine tıklıyoruz.

Akış şemamızda OK kısmına tıklayarak, Şekil 4-16’da
görülen Kontrol sekmesi altındaki Çağırma kısmına çift
tıklıyoruz ve aşağıda verilen (Şekil 5-9) pencereyi açıyoruz.

Flowgorithm Uygulaması ile Algoritma Geliştirme

86

Şekil 5-11 Fonksiyon uygulaması Akış şeması 11. kısım	

Program çalıştırıldığında, konsol ekranında Şekil 5-12’daki çıktıyı görürüz.

	

Şekil 5-12 Fonksiyon uygulaması Akış şemasının çıktısı

Son durumda akış şemamız Şekil 5-
11’deki gibi görünmektedir. Artık
kullanıcıdan alınan iki sayı, topla
fonksiyonunda tanımladığımız a ve b
değişkenlerinin yerine geçerek toplanacak
ve çıktı olarak sayıların toplamı ekrana
yazdırılacaktır.

Flowgorithm Uygulaması ile Algoritma Geliştirme 87

5.1.1 Fonksiyon	kullanımı	örneği	(Bankamatik	Uygulaması)	

Fonksiyonları	 anlamak	 için	 bir	 bankamatik	 düşünün;	 para	 çekme,	 para	 yatırma	 ve	
bakiye	sorgulama	işlemlerinin	her	biri,	arka	planda	çalışan	ayrı	birer	fonksiyondur.	
Şimdi	gerekli	akış	şemalarını	(Sekil	5-13)	oluşturarak	başlayalım.	

	

Şekil 5-13 Bankamatik uygulaması Ana Algoritma 1. Kısım

Değişken Tanımlamaları: miktar,
yatirma, secim, cekme, pin, gizliPin, k
ve islem adında değişkenler tanımlanır.
Değişkenlerin Başlangıç Değerleri:
miktar başlangıçta 1000 olarak atanır;
pin, islem ve cikis değişkenleri ise
sırasıyla 0, "e" ve false olarak başlatılır.

Flowgorithm dosyasına ulaşmak için kodu okutunuz

Flowgorithm Uygulaması ile Algoritma Geliştirme

88

	

Şekil 5-14Bankamatik uygulaması Menu fonksiyon algoritması

	

Şekil 5-15 Bankamatik uygulaması bekle fonksiyonu akış şeması

Kullanıcıyı yönlendirecek çıktılar,
menu fonksiyonu olarak şekil 5-
14 gibi tanımlanır.

Bekle Fonksiyonu (Bekle()): Belirli bir süre
beklemek amacıyla kullanılır. Ancak,
fonksiyon içindeki döngü boş olduğu için
aslında herhangi bir işlem gerçekleştirmez.
Oluşan şema Şekil 5-15’teki gibi olmaktadır.

Flowgorithm Uygulaması ile Algoritma Geliştirme 89

	

Şekil 5-16 Bankamatik uygulaması Ana Algoritma 2. Kısım

Bu noktadan Şekil (5-16) itibaren gizliPin değişkeni 12345 olarak atanır ve pin,
kullanıcıdan alınan pin kodu ile sisteme atadığımız gizliPin değerine eşit olduğu
sürece devam edecek bir while döngüsü başlatılır.

Flowgorithm Uygulaması ile Algoritma Geliştirme

90

	

Şekil 5-17 Bankamatik uygulaması Ana Algoritma 3. Kısım

menu fonksiyonu ile (Şekil 5-
17) seçenekler listelenir ve
kullanıcıdan bir seçim
yapması istenir. 1. seçim,
kullanıcının hesabındaki
bakiyeyi gösterir.

Flowgorithm Uygulaması ile Algoritma Geliştirme 91

	

Şekil 5-18 Bankamatik uygulaması Ana Algoritma 4. Kısım

2. seçim, kullanıcının para çekebileceği seçenektir. Burada (Şekil 5-18) ilk olarak,
çekmek istediği miktarın 100’ün katı olması için cekme değişkeninin 100 ile
kalansız bölünebilmesi şartı konmuştur. Ardından, kullanıcının çekmek istediği
miktarın miktar değişkenindeki bakiyeden fazla olması durumunda ‘yetersiz
bakiye’ uyarısı verilir; aksi halde, kullanıcı parasını çekebilir.

Flowgorithm Uygulaması ile Algoritma Geliştirme

92

	

Şekil 5-19 Bankamatik uygulaması Ana Algoritma 5. Kısım

3. seçim, kullanıcının yatırdığı
parayı anaparaya, yani miktar
değişkenine ekleyen seçenek
Şekil 5-19’da gösterilmiştir.

Flowgorithm Uygulaması ile Algoritma Geliştirme 93

	

Şekil 5-20 Bankamatik uygulaması Ana Algoritma 6. Kısım

4. seçim (Şekil 5-20),
while döngüsünü
sonlandırmak için
kullanıcıya sunulur; bu,
cikis değişkenini True
yapmak amacıyla yapılır.
Kullanıcı ‘h’ harfine
bastığında döngü sona
erer ve programdan
çıkılır.

Flowgorithm dosyasına ulaşmak için
kodu okutunuz

Flowgorithm Uygulaması ile Algoritma Geliştirme

94

6 Bölüm	
6.1 Grafik	Şekilleri	
6.1.1 Şekli	Temizle	

Bu sembol (Şekil 6-1), grafik penceresi için kullanılır. Arka planı temizler ve
imleci başlangıç noktasına (Ana Sayfa konumuna) geri döndürür.	

	

Şekil 6-1 Temizle

6.1.2 İleri	

İleri sembolü (Şekil 6-2) grafik penceresiyle birlikte kullanılır. Bir kalem görevi
gören ‘kaplumbağayı’ (imleci) belirli bir mesafe ileri hareket ettirir. Eğer ‘Kalem
Aşağı’ seçili ise kaplumbağa ilerlerken bir çizgi çizer; seçili değilse kaplumbağa
herhangi bir iz bırakmadan hareket eder.

	

Şekil 6-2 İleri

6.1.3 Ev	

Ev şekli (Şekil 6-3), Turtle Graphics penceresinde kullanılır ve kaplumbağayı
(imleci) başlangıç konumuna, yani ‘Ev’ noktasına geri götürür.

	

Şekil 6-3 Ev

Flowgorithm Uygulaması ile Algoritma Geliştirme 95

6.1.4 Dönüş	

Bu sembol (Şekil 6-4), grafik ekranında kaplumbağanın (imlecin) kaç derece ve
hangi yönde döneceğini belirtir.

	

Şekil 6-4 Dönüş

6.1.5 Çokgen	Çizme	Uygulaması	

Çokgen	 çizerken	 kenar	 sayısı	 değişse	 de	 'ilerle	 ve	 dön'	 algoritması	 hep	 aynıdır;	
fonksiyonlar	işte	bu	ortak	mantığı	tek	bir	kalıba	dökmemizi	sağlar.	Şekil	6-5	ile	verilen	
şema	ile	uygulamamızı	oluşturmaya	başlayabiliriz.	

	

Şekil 6-5 Çokgen çizme uygulaması akış şeması ana algoritma

Flowgorithm Uygulaması ile Algoritma Geliştirme

96

Öncelikle tamsayı türünde i ve kenarSayisi değişkenlerini tanımladık. Ardından bir
DO döngüsü kullanarak, kullanıcı kenarSayisi değişkenine 3’ten küçük bir değer
girdiğinde yeniden giriş yapmasını sağladık. Kullanıcı kenarSayisi değerini 3 veya
daha büyük girdiğinde DO döngüsü sona ermektedir.

Yanda gösterildiği gibi (Şekil 6-6)
bir for döngüsü tanımladık. Bu
döngü, 1’den başlayarak
kullanıcının girdiği kenar sayısına
kadar çalışacaktır. Şimdi, for
döngüsünün içerisinde yapılan
işlemleri inceleyelim.

Akış şemasındaki ok simgesine
tıkladığımızda, Kaplumbağa Grafik Penceresi bölümünde yer alan İleri sembolünü
seçip şemamıza ekliyoruz.

Şemaya eklediğimiz İleri sembolüne (Şekil
6-7) çift tıkladığımızda, kaplumbağanın kaç
birim ilerleyeceğini belirleyebileceğimiz
ayar penceresi açılır.

Aşağı bir ifade girin” kısmına 100 yazdık. For döngüsünün her adımında imleç 100
birim ileri hareket edecek ve Kalem Aşağı seçili olduğu için ilerlerken çizim
yapacaktır. Eğer Kalem Aşağı seçili değilse imleç yine ilerler, ancak bu ilerleme
sırasında herhangi bir çizim oluşmaz.

Şekil 6-7 Kaplumbağa grafik ekleme ekranı

Şekil 6-6 Çokgen çizme uygulaması for döngüsü

Flowgorithm Uygulaması ile Algoritma Geliştirme 97

	

Şekil 6-8 İleri şeklini ekleme ekranı

Sonrasında, kaplumbağa grafik sekmelerinin altındaki dönüş sembolünü (Şekil 6-
8) şemamıza ekliyoruz. Bu sembole çift tıkladığımızda aşağıdaki pencere (Şekil 6-
9) açılmaktadır.

	

Şekil 6-9 Dönüş şeklini ekleme ekranı

Flowgorithm Uygulaması ile Algoritma Geliştirme

98

Bu pencere, imlecin hangi yöne döneceğini ve dönüş açısını belirlediğimiz ekrandır.
Yön olarak sol, açı olarak ise çokgenlerde kullanılan dış açı formülü olan 360/n
kuralı seçilmiştir. Kullanıcı kaç kenar girecekse, 360 sayısını o kenar sayısına
bölerek dış açıyı elde etmiş oluyoruz. Örneğin kullanıcı üç kenarlı bir çokgen
seçerse dış açı 120 derece olacaktır. Böylece her döngüde imleç 120 derece dönerek
Şekil 6-10’daki gibi bir üçgen oluşturur.

	

Şekil 6-10 Programın çıktısı

Flowgorithm dosyasına ulaşmak için
kodu okutunuz

Flowgorithm Uygulaması ile Algoritma Geliştirme 99

6.1.6 Merdiven	çizme	uygulaması	

Karmaşık	görünen	bir	merdiven	yapısı,	aslında	basit	bir	'Basamak	Çiz'	fonksiyonunun	
belirli	bir	düzende	tekrar	tekrar	çağrılmasından	ibarettir.	Şekil	6-11	ile	verilen	akış	
şemasın	oluşturarak	fonksiyonumuza	başlayalım.	

	

Şekil 6-11 Ana fonksiyon 1. kısım

	

Şekil 6-12 Ana fonksiyon 2. kısım

İhtiyacımız	 olan	 sayac	 ve	 i	
değişkenlerini	 tanımladık.	 sayac	
değişkeni,	 merdivenin	 kaç	
basamaklı	 olacağını	 kullanıcıdan	
almak	 için	 kullanılacak	 olan	
değişkendir.	

Ardından	bir	for	döngüsü	(Şekil	
6-12)	 oluşturuyoruz	 ve	 bu	
döngü	 1’den	 başlayıp	 sayac	
değişkeninin	 değerine	 kadar	
devam	 ediyor.	 Kalem	 Aşağı	
seçeneği	 işaretliyken,	 imlecin	
50	 birim	 çizip	 90	 derece	 sağa	
dönmesini;	 ardından	 tekrar	 50	
birim	 çizip	 bu	 kez	 90	 derece	
sola	 dönmesini	 sağlayan	 bir	
döngü	 tanımladık.	 Bu	 işlem	 15	
kez	tekrarlandığında	Şekil	6-13	
elde	edilmektedir.	
	

Flowgorithm Uygulaması ile Algoritma Geliştirme

100

	

Şekil 6-13 Programın bu kısma kadar olan çıktısı

	

Şekil 6-14 Ana program 3. kısım

Son	 olarak	 grafiği	 tamamlamak	 için	 imleci	 180	
derece	 sağa	 döndürdük	 ve	 merdivenin	 her	
basamağı	 50	 birim	 olduğundan,	 yukarıya	 doğru	
toplamda	 sayaç	×	50	 birim	 ilerlettik.	Aynı	 şekilde,	
merdiven	15	basamak	 için	 sağa	doğru	da	15	×	50	
birim	 kaydığı	 için	 imleci	 geri	 konumlandırmak	
adına	önce	90	derece	sağa	döndürdük	ve	ardından	
tekrar	sayaç	×	50	birim	ileri	gönderdik	(Şekil	6-14).	
Bu	 işlemler	 tamamlandığında	 merdiven	 şekli	
oluşturulmuş	olur.	Son	durumda	grafiğimiz	Şekil	6-
15’teki	gibi	görünmektedir.	

Flowgorithm Uygulaması ile Algoritma Geliştirme 101

	

Şekil 6-15 Programın son halinin çıktısı

6.1.7 Fraktal	Çizdirme	Uygulaması	

Fraktallar,	parçanın	bütüne	benzediği	şekillerdir;	biz	de	fonksiyonumuza	'bir	dal	çiz	
ve	ucuna	daha	küçük	iki	dal	daha	çizmesi	için	kendini	tekrar	çağır'	diyerek	bu	
büyüleyici	desenleri	oluştururuz.	

1. Ucgen adında bir fonksiyon tanımlanır.
Bu fonksiyon, fraktal üçgenin oluşturulmasından sorumludur. İki
parametre alır:

uzunluk: Üçgenin kenar uzunluğu

derinlik: Fraktalın kaçıncı derinlik seviyesine kadar oluşturulacağı

2. İf(derinlik>0) koşulu uygulanır.

Bu koşul, derinlik değerinin 0’dan büyük olup olmadığını kontrol eder.

Flowgorithm dosyasına ulaşmak için
kodu okutunuz

Flowgorithm Uygulaması ile Algoritma Geliştirme

102

Derinlik 0’dan büyükse fraktal üçgenin oluşturulması devam eder. Koşulun
içinde bir for döngüsü tanımlanır.

3. i değişkeni 1’den başlayarak 3’e kadar artan bir döngü kuruludur.
Bu döngü, üçgenin üç kenarı için yapılacak işlemleri tekrarlar. Bir üçgen üç
kenardan oluştuğu için döngü 3 kez çalışır.

4. uzunluk / 3 kadar çiz:
Üçgenin her bir kenarı için, kenar uzunluğunun üçte biri kadar çizgi çizilir.

5. Ucgen(uzunluk / 3, derinlik - 1) şeklinde fonksiyon kendini yeniden çağırır.
Bu çağrıda kenar uzunluğu üçte bire düşürülür, derinlik ise bir azaltılır. Bu
işlem, her seviyede üçgenin küçülerek daha detaylı hale gelmesini sağlar.

6. Yeniden uzunluk / 3 kadar çizilir.
Böylece üçgenin her kenarı için toplam üç segment çizilmiş olur.

7. 120 derece sağa dön:
Üç kenardan her biri çizildikten sonra imleç 120 derece sağa döner. Bu
dönüş üçgenin yapısını oluşturur.

Ana Fonksiyonun Tanımlanması

1. Öncelikle derinlik isimli bir tamsayı değişkeni tanımlanır.
Kullanıcıdan bu değişkeni 1 ile 7 arasında bir değer girmesi istenir.

2. Ucgen fonksiyonu Ucgen(yükseklik, derinlik) şeklinde çağrılır.
Burada yükseklik 200 olarak belirlenmiştir. Yani fonksiyon şu şekilde
çalıştırılır:
Ucgen(200, derinlik)

3. Belirlenen derinlikte oluşturulmuş fraktal üçgen ekranda Şekil 6-16’daki
gibi görüntülenir.

Flowgorithm Uygulaması ile Algoritma Geliştirme 103

	

Şekil 6-16 Fraktal örneği

https://drive.google.com/file/d/1QHlleZxLW2dJkQ4Y2fX0S8XLtr_V-
49V/view?usp=drive_link linkini tıklayarak uygulamanın pdf dosyasına
ulaşabilirsiniz.

Flowgorithm dosyasına ulaşmak için
kodu okutunuz

https://drive.google.com/file/d/1QHlleZxLW2dJkQ4Y2fX0S8XLtr_V-49V/view?usp=drive_link
https://drive.google.com/file/d/1QHlleZxLW2dJkQ4Y2fX0S8XLtr_V-49V/view?usp=drive_link

Flowgorithm Uygulaması ile Algoritma Geliştirme

104

7 Bölüm	
7.1 Dosya	I/O	Şekilleri	
7.1.1 Açık	

Belirli bir dosyanın okunmasına veya yazılmasına izin vermek için Şekil 7-1 kullanılır.
Dosya adı tırnak işaretleri içerisinde belirtildikten sonra, alt sekmelerden dosya modu
seçilerek okuma ya da yazma işlemi belirlenir.

	

	

Şekil 7-1 Açık

7.1.2 Kapalı	

Kapatma ifadesi (Şekil 7-2), açık olan bir dosyanın okunması veya dosyaya
yazılması işlemini sonlandırır. Program sona ermeden önce tüm dosyaların
kapatılması gerekir.

	

Şekil 7-2 Kapalı

7.1.3 Okuma	

Bu	sembol	(Şekil	7-3),	açılan	dosyadan	bir	değeri	okur	ve	okunan	bu	ifadeyi	bir	
değişkende	saklar.	

	

Şekil 7-3 Okuma

Flowgorithm Uygulaması ile Algoritma Geliştirme 105

7.1.4 Yazma	

Bir ifadeyi değerlendirir ve sonucunu açık olan dosyaya kaydetmek için verilen
Şekil 7-4 kullanılır.

	

Şekil 7-4 Yazma

7.1.5 Dosya	Okuma	Örneği	

İçinde meyve isimleri bulunan bir .txt uzantılı metin belgesi oluşturalım.
Dosyamızın adı meyveler.txt olacak ve Flowgorithm dosyamız ile bu metin
dosyasının aynı klasörde yer alması gerekir. Örneğin her iki dosyayı da
masaüstünde tutabilirsiniz.

	

Şekil 7-5 Ana algoritma 1. Kısım

Sonrasında	 akış	 şemamıza	 (Şekil	 7-5)	 bir	 String	
değişken	 tanımlamamız	 gerekir.	 Bu	 değişkenin	 adı	
textDosyası	 olsun.	 Bu	 tanımlamayı	 yaptıktan	 sonra	
şemamıza	 Açık	 ifadesini	 ekliyoruz.	 Üzerine	 çift	
tıkladığımızda	ise	aşağıdaki	pencere	açılacaktır.	

Flowgorithm Uygulaması ile Algoritma Geliştirme

106

	

Şekil 7-6 Okumak istediğimiz dosyayı akış şemasına ekleme ekranı

Açılan bu pencerede (Şekil 7-6), tırnak işaretleri içerisine okumak istediğimiz
dosyanın adını uzantısıyla birlikte yazıyoruz. Okuma işlemi yapacağımız için Mod
bölümünden “Okumak” seçeneğini işaretliyoruz ve ardından OK sekmesine
tıklayarak akış şemasına geri dönüyoruz.

Bu adımla birlikte meyveler.txt dosyasını okumak üzere açmış olduk. Şimdi, bu
dosyanın içindeki verileri daha önce tanımladığımız String textDosyası değişkenine
aktarmamız gerekiyor. Bunun için akış şemamıza bir while döngüsü ekleyelim.

While döngüsünde şart olarak not eof() özel fonksiyonunu kullanalım. Bu
fonksiyon, dosyanın sonuna ulaşılana kadar metin dosyası içindeki verilere
erişmemizi sağlar.

Flowgorithm Uygulaması ile Algoritma Geliştirme 107

	

Şekil 7-7 Dosya okuma eklendikten sonra akış
şemasındaki görünüm

Son olarak, Flowgorithm’de açılan her dosyanın kapatılması zorunludur. Bu
nedenle akış şemamıza bir adet Kapat ifadesi ekliyoruz. Bu ifadeye çift tıklayıp
açılan pencerede Mod: Okumak seçeneğini işaretleyerek OK sekmesine tıklıyoruz.
Böylece program tamamlanmış olur. Program çalıştırıldığında konsol ekranı
aşağıdaki gibi (Şekil 7-8) görünmektedir.

	

Şekil 7-8 Program çalıştırıldıktan sonra oluşan çıktı

Artık textDosyası değişkeninde
bulunan verileri okuyarak çıktı olarak
alabiliriz. Şemada da görüldüğü gibi
(Şekil 7-7), while döngümüzün içine
Okumak ifadesini ekliyoruz. Bu
ifadeye çift tıkladığımızda açılan
pencereye, okumak istediğimiz
String değişkeninin adını yani
textDosyası yazıp OK sekmesine
tıklıyoruz.

Verileri konsol ekranına yazdırmak
için ise textDosyası değişkenini çıktı
olarak while döngüsünün içine
ekliyoruz. Böylece dosyada yer alan
her satır, döngü ilerledikçe ekranda
görüntülenmiş olur.

Flowgorithm Uygulaması ile Algoritma Geliştirme

108

7.1.6 1’den	10’a	kadar	olan	sayıların	karelerini	alıp	txt	
dosyasına	yazdıran	program	

Dosya	 işlemlerinin	 mantığını	 kavramak	 adına,	 döngüleri	 ve	 yazdırma	 komutlarını	
birleştirerek	1’den	10’a	kadar	olan	sayıların	karelerini	harici	bir	dosyaya	kaydeden	
şu	örneği	(Şekil	7-9)	inceleyelim.	

	

Şekil 7-9 Akış şemasına açık şekli ekleme ekranı

Akış	şemamıza	tamsayı	türünde	bir	i	değişkeni	ekleyelim.	
Ardından,	sayıların	karelerini	yazdırmak	için	kullanılacak	
olan	 .txt	dosyasını	 açmamız	gerekir.	Bu	dosya,	program	
tarafından	otomatik	olarak	oluşturulacaktır.	Bu	nedenle	
şemamıza	 Açık	 ifadesini	 ekleyelim	 ve	 üzerine	 çift	
tıklayarak	aşağıdaki	pencereyi	açalım.	

Flowgorithm dosyasına ulaşmak için
kodu okutunuz

Flowgorithm Uygulaması ile Algoritma Geliştirme 109

	

Şekil 7-10 Okumak istediğimiz dosyayı belirleme ekranı

Açılan pencerede (Şekil 7-10), oluşturmak istediğimiz dosyanın adını tırnak
işaretleri içinde yazalım. Dosyamıza “sayilarin kareleri.txt” şeklinde bir isim
verdikten sonra, dosyaya veri yazacağımız için Mod bölümünden “Yazmak”
seçeneğini işaretleyelim ve OK sekmesine tıklayalım.

Ardından akış şemamıza bir for döngüsü ekleyelim. Bu döngü, i değişkeni için
1’den başlasın ve 10 değerine kadar çalışsın.

	

Şekil 7-11 Akış şemasına dosya içinde yapılması istenen şekillerin ekleme ekranı

Döngümüzün	 içine	 bir	 Yazmak	 bloğu	
ekleyelim	 (Şekil 7-11)	 ve	 bu	 bloğa	 çift	
tıklayarak	 açılan	 pencerenin	 içine	 i^2	
ifadesini	 yazalım.	 Bu	 ifade,	 for	 döngüsü	
her	çalıştığında	o	anki	i	değerinin	karesini	
açık	 durumda	 olan	 .txt	 dosyasına	
kaydedecektir.	
Son	olarak,	açık	olan	dosyayı	kapatmak	
için	akış	şemamıza	bir	Kapat	bloğu	
ekleyelim.	Bu	blokta	Mod:	Yazmak	seçili	
olmalıdır.	Tüm	adımlar	tamamlandıktan	
sonra	programı	çalıştırabiliriz.	
	

Flowgorithm Uygulaması ile Algoritma Geliştirme

110

	

Şekil 7-12 Program çalıştıktan sonra oluşan txt dosyası

Program çalıştıktan sonra, Flowgorithm dosyamızın
bulunduğu konumda “sayilarin kareleri.txt” adlı bir
metin belgesi oluşur (Şekil 6-12). Bu dosyanın içinde,
1’den 10’a kadar olan sayıların kareleri alt alta
gelecek şekilde yazılmış olarak bulunur.

Flowgorithm dosyasına ulaşmak için
kodu okutunuz

Flowgorithm Uygulaması ile Algoritma Geliştirme 111

8 Bölüm	
8.1 Farklı	Yazılım	Dillerinde	Çıktı	Alma	

Flowgorithm’de oluşturduğumuz akış şemalarını farklı yazılım dillerinde çıktı
olarak alabiliriz. Aşağıdaki Şekil 8-1’de, çıktı olarak dönüştürebileceğimiz yazılım
dilleri gösterilmektedir.

	

Şekil 8-1 Flowgorithm ile akış şemalarını dönüştürebileceğimiz diller

Flowgorithm Uygulaması ile Algoritma Geliştirme

112

8.2 Genel	Örnek	Uygulamalar	
8.2.1 ATM	Simülasyonu	

Sınıflar	 (Classes)	 ve	 Nesneler	 (Objects)	 arasındaki	 ilişkiyi	 anlamanın	 en	 iyi	
yollarından	 biri,	 her	müşterinin	 ve	 hesabın	 ayrı	 birer	 nesne	 olarak	 ele	 alındığı	 bir	
bankamatik	 sistemi	 tasarlamaktır.	Şekil 8-2 de ihtiyacımız olan tüm değişkenler
tanımlanmıştır. Bu değişkenlerin nasıl kullanılacağı ise programın ilerleyen
aşamalarında açıklanacaktır.	

	

Şekil 8-2 Ana fonksiyonumuz 1. kısım

Şekil 8-2 de ihtiyacımız olan tüm değişkenler tanımlanmıştır. Bu değişkenlerin nasıl
kullanılacağı ise programın ilerleyen aşamalarında açıklanacaktır.

Flowgorithm Uygulaması ile Algoritma Geliştirme 113

	

Şekil 8-3 Bekle Fonksiyonumuz

	

Şekil 8-4 Ana fonksiyon 2. kısım

Ana programımıza başlamadan önce
“bekle” şeklinde bir fonksiyon (Şekil 8-
3) tanımladık. Bu fonksiyonun
kullanılabilmesi için, mesaj ve süre
bilgilerini girerek tanımlama yapılması
gerekir. Fonksiyonu, programın farklı
bölümleri arasında kısa bir bekleme
süresi oluşturmak için kullanacağız.
Fonksiyon çağrıldığında, süre
değişkenine hangi değer atanmışsa,
içindeki boş for döngüsü o değer kadar
çalışacak ve program akışında belirli bir
gecikme oluşacaktır.

Ana fonksiyonumuza geri döndük. Kullanıcıya,
Şekil 8-4’te gösterildiği gibi “Kartınızı takınız”
şeklinde bir çıktı verdik. Ardından “Lütfen
bekleyiniz” ifadesinin konsol ekranında bir süre
görünmesi için bekle fonksiyonunu, süre değişkeni
100000 olacak şekilde çağırdık. Fonksiyon
içindeki for döngüsü 100000 kez boş döneceği için
kısa bir bekleme süresi oluşacaktır. Ayrıca
kullanıcının kart şifresi 12345 olarak
belirlenmiştir.

Flowgorithm Uygulaması ile Algoritma Geliştirme

114

	

Şekil 8-5 Ana fonksiyon 3. kısım

Programın devamında bir while döngüsü (Şekil 8-5) tanımladık. Bu döngü içinde
kullanıcıdan bir şifre girmesi istenir ve girilen değer girilenSifre değişkenine atanır.
Kullanıcı, sistemSifresi ile aynı şifreyi girene kadar döngü devam eder. Her yanlış
girişte kullanıcı “Lütfen şifrenizi doğru giriniz.” şeklinde uyarılır. Şifre doğru
girildiğinde ise program döngüden çıkar.

Değişkenleri tanımlarken Boolean türünde cikilsinMi = false şeklinde bir değişken
oluşturmuştuk. Bu değişken, kullanıcı istemediği sürece programın kapanmamasını
sağlamak için kullanılacaktır. Bu amaçla bir do döngüsü (Şekil 8-6) tanımlıyoruz
ve bu adımdan sonra tüm bloklarımızı bu döngünün içine yerleştiriyoruz.

	

Şekil 8-6 Ana fonksiyon 4. kısım

Flowgorithm Uygulaması ile Algoritma Geliştirme 115

	

Şekil 8-7 Menü fonksiyonu

Şekil 8-7’de gösterildiği gibi menu adlı bir fonksiyon tanımlıyoruz. Bu fonksiyonun
özel bir işlevi bulunmamaktadır; yalnızca ana fonksiyonun çok kalabalık
görünmesini önlemek amacıyla menüyü ayrı bir fonksiyon olarak tasarladık.

Flowgorithm Uygulaması ile Algoritma Geliştirme

116

	

Şekil 8-8 Ana fonksiyon 5. kısım

Ana fonksiyonumuza yeniden döndük ve do döngüsünün içerisinde menu()
fonksiyonunu (Şekil	 8-8) çağırdık. Kullanıcı programı çalıştırdığında, menu
fonksiyonunun içindeki çıktılar konsol ekranında görüntülenecektir. Ardından
kullanıcıya dört farklı seçenek sunulmuştur. Kullanıcıdan alınan değer secim
değişkenine atanır ve bu dört durum sırayla değerlendirilir.

Eğer secim = 1 ise, kullanıcı hesap bakiyesini görüntülemek istemiş olur. Şemada
görüldüğü gibi, bu durumda hesap bakiyesi konsol ekranına yazdırılır ve kısa bir
beklemenin ardından do döngüsü başa döner. Böylece menü yeniden ekrana
yazdırılır ve kullanıcıdan tekrar bir seçim yapması istenir.

Flowgorithm Uygulaması ile Algoritma Geliştirme 117

	

Şekil 8-9 Ana fonksiyon 6. kısım

 Kullanıcı secim değişkenine 2 değerini girdiğinde, konsol ekranında “Lütfen
çekmek istediğiniz tutarı giriniz.” şeklinde bir bilgilendirme mesajı görüntülenir ve
ardından kullanıcıdan cekilenPara değişkenine bir değer girmesi istenir.

Girilen tutarın işleme uygun olup olmadığı bir dizi koşulla kontrol edilir. İlk olarak,
çekilmek istenen tutarın 100'ün katı olup olmadığı incelenir. Eğer cekilenPara %
100 != 0 ise, konsol ekranına “Lütfen çektiğiniz tutar 100’ün katı olsun.” uyarısı
yazdırılır.

Tutar 100'ün katıysa, bu kez farklı bir koşulla çekilmek istenen miktarın mevcut
bakiyeden büyük olup olmadığı kontrol edilir. Eğer cekilenPara > bakiye ise
kullanıcıya “Yetersiz bakiye.” uyarısı verilir.

Bu iki koşul sağlanmıyorsa, işlem başarıyla gerçekleştirilir. Bakiye, bakiye =
bakiye- cekilenPara şeklinde güncellenir; kullanıcıya kartını alması gerektiği
bildirilir ve kısa bir bekleme süresinin ardından güncel bakiye konsol ekranına
yazdırılır. Oluşan algoritma Şekil 8-9’daki gibi olmaktadır.

Flowgorithm Uygulaması ile Algoritma Geliştirme

118

Tüm bu işlemler tamamlandıktan sonra do döngüsü başa döner ve menü fonksiyonu
yeniden çağrılarak kullanıcıdan tekrar bir seçim yapması Şekil 8-10’daki gibi
istenir.

	

Şekil 8-10 Ana fonksiyon 7. kısım

Secim değişkeninin değeri 3 olarak girildiğinde, kullanıcı konsol ekranında para
yatırma işlemi için yönlendirilir ve “Lütfen yatırmak istediğiniz tutarı giriniz.”
şeklinde bir mesaj görüntülenir. Kullanıcının girdiği değer yatirilanPara
değişkenine atanır.

Bu değerin alınmasının ardından, mevcut bakiye bakiye = bakiye + yatirilanPara
ifadesiyle güncellenir ve böylece yeni bakiye miktarı elde edilmiş olur. Ardından

Flowgorithm Uygulaması ile Algoritma Geliştirme 119

bekle fonksiyonunun çalışmasıyla kısa bir duraklama sağlanır ve kullanıcıya güncel
bakiye bilgisi konsol ekranında gösterilir.

Tüm bu işlemler tamamlandıktan sonra do döngüsü tekrar başa döner ve menü
fonksiyonu yeniden çalıştırılarak kullanıcıdan tekrar bir seçim yapması Şekil 8-
11’deki gibi istenir.

	

Şekil 8-11 Ana fonksiyon 8. kısım

Secim değişkeninin 4 olarak girilmesi, kullanıcının programdan çıkmak istediği
anlamına gelen menü seçeneğidir. Bu aşamada kullanıcıya “Programdan çıkmak
istiyor musunuz? (evet/hayır)” şeklinde bir soru yöneltilir. Kullanıcının girdiği
yanıt, devamDurumu değişkenine atanır. Bu değişkenin değeri, do döngüsünün
sonlandırılıp sonlandırılmayacağını belirleyeceği için programın kapanma
koşulunu kontrol eden temel unsur olarak kullanılır.

Kullanıcı devamDurumu değişkenine “hayır” değerini girdiğinde, konsol ekranında
“Kartınızı alınız.” ifadesi görüntülenir ve kısa bir bekleme süresi uygulanır. Ardından
sistem, “ATM servislerimizi kullandığınız için teşekkür ederiz.” mesajını ekrana
yazdırır. Bu işlemden sonra cikilsinMi değişkeninin değeri true olarak güncellenir.

Programın başında do döngüsünün çalışma koşulu cikilsinMi değişkeni false olduğu
sürece döngünün devam etmesi şeklinde tanımlandığı için, değerin true olarak
değişmesiyle birlikte döngü sonlanır ve program kapanır. Oluşan akış şeması Şekil 8-
12’deki gibi olmaktadır.

Flowgorithm Uygulaması ile Algoritma Geliştirme

120

	

Şekil 8-12 Ana fonksiyon 9. kısım

8.2.2 Verilen	şemanın	Python	çıktısı	

def bekle(mesaj, süre):
 print(mesaj)
 for i in range(0, süre + 1, 1):
 pass

def menü():
 print("******** ATM Servislerine Hoşgeldiniz **************")
 print("1. Hesaplar Bakiye Durumu")
 print("2. Para Çek")
 print("3. Para Yatır")
 print("4. Çıkış")
 print("**")
 print("Seçim Yapınız : ")

Main

bakiye = 1000
girilenSifre = 0
devamDurumu = "hayır"
cikilsinMi = False
print("Kartınızı Takınız")

Flowgorithm Uygulaması ile Algoritma Geliştirme 121

bekle("Lütfen Bekleyiniz", 100000)
sistemSifresi = 12345

while girilenSifre != sistemSifresi:
 print("Lütfen Şifrenizi Giriniz: ")
 girilenSifre = int(input())
 bekle("Lütfen Bekleyiniz", 100000)
 if girilenSifre != sistemSifresi:
 print("Lütfen Şifrenizi Doğru Giriniz")

while True:
 menü()
 secim = int(input())

 if secim == 1:
 print("Hesap Bakiyeniz: " + str(bakiye))
 bekle("Lütfen Bekleyiniz", 100000)
 if secim == 2:
 print("Çekmek istediğiniz tutarı giriniz:")
 cekilenPara = int(input())
 if cekilenPara % 100 != 0:
 print("LÜTFEN MİKTARI 100'ÜN KATLARI OLARAK GİRİNİZ")
 else:
 if cekilenPara > bakiye:
 print("Yetersiz Bakiye")
 else:
 bakiye = bakiye - cekilenPara
 print("Lütfen Paranızı Alınız")
 bekle("Lütfen Bekleyiniz", 100000)
 print("Güncel Bakiye: " + str(bakiye))
 if secim == 3:
 print("Yatırmak istediğiniz miktarı girin")
 yatirilanPara = int(input())
 bakiye = bakiye + yatirilanPara
 bekle("Lütfen Bekleyiniz", 100000)
 print("Güncel Bakiyeniz: " + str(bakiye))
 if secim == 4:
 print("Başka bir işlem yapmak istermisiniz ?(evet/hayır)")
 devamDurumu = input()
 if devamDurumu == "hayır":
 print("Kartınızı alınız")
 bekle("Lütfen Bekleyiniz", 100000)
 print("ATM servislerimizi kullandığınız için teşekkür ederiz")
 cikilsinMi = True
 if cikilsinMi != False: break

Flowgorithm Uygulaması ile Algoritma Geliştirme

122

8.2.3 XOX	Oyununun	Akış	Şeması	

Oyunumuzu tasarlarken, aşağıdaki görselde (Şekil 8-13) yer aldığı gibi 3×3
boyutunda bir matrisi kullanıcıya çıktı olarak sunacağız. Kullanıcı bir konum
seçtiğinde seçilen hücreye “X”, bilgisayar bir konum seçtiğinde ise “O” sembolü
yerleştirilecek ve oyun bu şekilde ilerleyecektir.

	

Şekil 8-13 Oyun Genel Yapısı

	

Şekil 8-14 Ana fonksiyon 1. kısım

Tahta isimli, String türünde bir
dizi tanımladık (Şekil 8-14) ve
bu dizinin boyutunu 10 olarak
belirledik. Bir for döngüsü ve
index değişkeni kullanarak
dizinin her bir elemanına
karşılık gelen indeks
numaralarını oluşturmuş
olacağız. Program çalıştığında
for döngüsü sırasıyla:
tahta[0], tahta[1], tahta[2],
tahta[3], tahta[4], tahta[5],
tahta[6], tahta[7], tahta[8]
şeklinde dizinin elemanlarını
oluşturur ve oyun tahtasının
başlangıç durumunu hazırlar.

Flowgorithm dosyasına ulaşmak için
kodu okutunuz

Flowgorithm Uygulaması ile Algoritma Geliştirme 123

Ana programda kullanacağımız değişkenler Şekil 8-15’de gösterilmiştir. Bu
değişkenler, oyunun akışını kontrol etmek, kullanıcıdan alınan değerleri saklamak
ve oyun tahtasının güncel durumunu takip etmek amacıyla kullanılacaktır.

	

Şekil 8-15 Ana fonksiyon 2. kısım

	

Şekil 8-16 Tahta çizme fonksiyonu

Oyun tahtasını konsol ekranında
görüntülemek için
tahtayiCiz(tahta) isimli bir
fonksiyon (Şekil 8-16)
tanımlıyoruz. Bu fonksiyon, ana
programdan gönderilen tahta[]
dizisindeki güncel değerleri
kullanarak oyun tahtasını konsol
ekranına çizer. Böylece kullanıcı,
hamlelerden sonra tahtanın son
durumunu görebilir.
Fonksiyon tanımlandıktan sonra
ana programa geri dönerek
tahtayiCiz fonksiyonunu
çağırıyoruz.

Flowgorithm Uygulaması ile Algoritma Geliştirme

124

	

Şekil 8-17 Ana fonksiyon 3. kısım

tahtayiCiz fonksiyonunu çağırdıktan sonra oyunumuzu programlamaya devam
etmek için bir while döngüsü (Şekil	8-17)	 oluşturuyoruz. Döngünün koşulu olarak,
daha önce tanımlamış olduğumuz boolean türündeki oyunaDevamMi değişkenini
kullanıyoruz. Bu değişkenin değeri true olduğu sürece döngü çalışmaya devam
edecek; değer false olduğunda ise döngü sonlanacaktır.

Bu aşamada while(oyunaDevamMi) döngüsünün içerisine bir if yapısı ekliyoruz ve
bu yapıya koşul olarak boolean türündeki oyuncu değişkenimizi veriyoruz. Eğer
oyuncu değişkeninin değeri true ise oynama sırası kullanıcıda; değer false ise
oynama sırası bilgisayardadır. O an hangi oyuncunun hamle yapacağını
belirleyebilmek için string türünde tanımladığımız guncelOyuncu değişkenini
kullanıyoruz. Kullanıcı için sembolü "X", bilgisayar için ise "O" olarak belirlemiş
bulunuyoruz.

Artık oyuncu hamlelerinin kodlanmasına geçebiliriz. Bunun için
oyuncuHamlesi(tahta) isimli bir fonksiyon oluşturarak kullanıcının hamle yapma
sürecini programlayacağız.

Flowgorithm Uygulaması ile Algoritma Geliştirme 125

	

Şekil 8-18 Oyuncu hamlesi çizme fonksiyonu

	

Şekil 8-19 Ana fonksiyon 4. kısım

Şimdi, oyuncunun bir hamle yapmasını sağlamak için oyuncuKaresiSec() isimli
ayrı bir fonksiyon tanımlayalım. Bu fonksiyondan dönen değer, diziIndeksi
değişkenine atanacak ve böylece oyuncunun seçtiği kare belirlenmiş olacaktır.

Fonksiyonumuzu oluşturmaya, ihtiyaç duyduğumuz
değişkenleri tanımlayarak (Şekil 8-18) başladık. Bu
değişkenlerin her biri oyunun akışı içerisinde belirli
görevler üstlenecektir. Her değişkenin nasıl kullanılacağı
ise fonksiyonun ilerleyen aşamalarında ayrıntılı olarak
açıklanacaktır.

Bir while döngüsü oluşturuyoruz
(Şekil 8-19) ve bu döngü, boolean
türündeki gecerli değişkeninin
değeri false olduğu sürece
çalışmaya devam edecektir. Bu
yapının kullanılmasındaki amaç,
kullanıcının daha önce
işaretlenmiş olan tahta[]
elemanlarından birini seçmesi
durumunda, geçersiz hamleyi
engelleyip ondan yeni bir seçim
yapmasını sağlamaktır.

Flowgorithm Uygulaması ile Algoritma Geliştirme

126

	

Şekil 8-20 Oyumcu karesi seçme Fonksiyonu

Artık kullanıcıya bir kare seçtirdiğimize göre, seçilen karenin geçerli olup
olmadığını kontrol etmemiz gerekiyor. Bunun için oyuncuSecimiGecerliMi(tahta,
diziIndeksi) şeklinde bir fonksiyon oluşturalım. Bu fonksiyon, kullanıcının seçtiği
karenin daha önce işaretlenip işaretlenmediğini kontrol edecek ve geçerli olup
olmadığını belirleyecektir.

	

Şekil 8-21 Oyuncunun geçerli kare seçtiğini kontrol eden fonksiyon

Yandaki fonksiyonda (Şekil 8-20), diziIndeksi
değişkeninin değerini kullanıcının belirlemesi
için konsol ekranına bir çıktı verdik. Kullanıcının
girdiği değer, diziIndeksi değişkenine atanır.
Fonksiyonun dönüş değeri olarak da diziIndeksi
belirlenmiştir, böylece fonksiyon çağrıldığında
kullanıcının seçimi elde edilmiş olur.

Flowgorithm Uygulaması ile Algoritma Geliştirme 127

Fonksiyonumuzda (Şekil 8-21) gerekli değişkenleri tanımladıktan sonra bir if yapısı
oluşturduk. Bu yapıda, eğer tahta[diziIndeksi - 1] == "X" ise —yani kullanıcının
seçtiği indeksin bir eksiğinde “X” sembolü varsa— gecerli değişkeninin değeri false
olacak şekilde kontrol sağlanır.

Dizi indeksinde 1 çıkarmamızın nedeni, konsol ekranında tahtanın 1–9 arası
karelerden oluşurken, programımızdaki dizinin indekslerinin 0–8 arasında
olmasıdır. Kullanıcının girdiği değerden 1 çıkararak, dizinin indeksleri ile
eşleşmesini sağlıyoruz.

Bu fonksiyon while(gecerli == false) döngüsünün içerisinde tanımlandığı için,
gecerli değişkeninin değeri false olduğu sürece program bu kontrolü tekrar
edecektir. Fonksiyonun dönüş değeri de gecerli olarak belirlenmiştir.

Kullanıcıya kare seçtirip geçerliliğini kontrol ettikten sonra, artık tahtayı
kullanıcının seçtiği kareye “X” sembolü gelecek şekilde güncellememiz gerekiyor.
Bunun için oyuncuHamlesi(tahta) fonksiyonuna geri dönerek, while(gecerli ==
false) döngüsünün hemen (Şekil 8-22) altına tahtayiGuncelle(tahta, diziIndeksi,
guncelOyuncu) fonksiyonumuzu çağırıyoruz.

	

Şekil 8-22 Ana fonksiyon 5. kısım

Flowgorithm Uygulaması ile Algoritma Geliştirme

128

	

Şekil 8-23 Tahtayı güncelleme fonksiyonu

Fonksiyonumuzu (Şekil 8-23) incelediğimizde, tahta[diziIndeksi - 1] =
guncelOyuncu şeklinde bir değer ataması yaptığımızı görüyoruz. Buradaki amaç,
örneğin kullanıcı 9 numaralı kareyi seçerse, tahta[8] = "X" olacak şekilde
güncelleme yapmaktır. Çünkü ana fonksiyonda sıra kullanıcıda olduğu için,
guncelOyuncu = "X" olarak tanımlanmıştır.

Bu atama işlemi tamamlandıktan sonra, tahtanın güncel durumu konsol ekranına
yazdırılacak ve tahta[8] konumunda “X” sembolü görüntülenecektir.

Artık kullanıcı hamlelerini kodladığımıza göre, bir sonraki adım olarak (Şekil 8-24)
bilgisayarın hamlelerini kodlamaya geçebiliriz.

Flowgorithm Uygulaması ile Algoritma Geliştirme 129

	

Şekil 8-24 Ana fonksiyon 6. kısım

Şemamızın sol tarafına geçmek için oyuncu değişkeninin değeri false olmalıdır.
İlerleyen aşamalarda bu değeri değiştireceğiz; şimdilik oynama sırası bilgisayarda
olduğu için, guncelOyuncu değişkeninin değerini “O” olarak atıyoruz. Konsol
ekranına, sıranın bilgisayarda olduğunu belirten bir çıktı verdikten sonra,
pcHamlesi(tahta) fonksiyonunu (Şekil 8-25) kodlamaya başlayabiliriz.

	

Şekil 8-25 Ana fonksiyon 7. kısım

Bilgisayar hamlesinde de, oyuncu hamlesinde
fonksiyonumuzda yaptığımız benzer işlemleri
gerçekleştireceğiz. Öncelikle, bu fonksiyonda
kullanacağımız gerekli değişkenleri tanımlayarak işe
başlayalım.

Flowgorithm Uygulaması ile Algoritma Geliştirme

130

	

Şekil 8-26 Ana fonksiyon 8. kısım

Bu aşamada (Şekil 8-26), while(gecerli == false) döngüsü oluşturuyoruz. Döngü
içerisinde üç fonksiyon kullanıyoruz.

İlk fonksiyon, diziIndeksi = pcKaresiSec(), bilgisayarın hamle yapmasını sağlamak
için kullanılacaktır. Bu fonksiyon, bilgisayarın rastgele bir kare seçmesini
sağlayacak şekilde kodlanacaktır.

Diğer iki fonksiyon ise, oyuncuSecimiGecerliMi(tahta, diziIndeksi) ve
tahtayiGuncelle(tahta, diziIndeksi, guncelOyuncu), kullanıcı için tanımladığımız
işlemlerle aynıdır. Burada da aynı şekilde, seçilen karenin geçerliliğini kontrol
etmek ve tahtayı güncellemek amacıyla kullanıyoruz.

Özetle, bu döngüde bilgisayar bir kare seçer, seçimin geçerliliği kontrol edilir ve
ardından tahtadaki durum güncellenir; bu işlem geçerli bir seçim yapılana kadar
tekrarlanır.

Flowgorithm Uygulaması ile Algoritma Geliştirme 131

	

Şekil 8-27 Bilgisayarın hamle seçeceği fonksiyon

Hem oyuncu hem de bilgisayar hamlelerini yaptırdık; ancak bu hamleler bir döngü
içerisinde devam ediyor. Oyun sona erdiğinde, döngüyü sonlandırmamız gerekiyor.

XOX oyunu kuralları gereği, aynı satırda, sütunda veya çaprazda sembolünü ilk
yerleştiren oyuncu oyunu kazanır. Bu nedenle, oyunun her aşamasında bu üç
durumu da kontrol etmemiz gerekmektedir. Bu kontrolleri,
kazananiKontrolEt(tahta, guncelOyuncu) fonksiyonu içinde ayrı ayrı fonksiyonlar
aracılığıyla Şekil 8-28’de gerçekleştireceğiz.

Bilgisayara bir kare seçtirmek
için, diziIndeksi değişkeninin
değerini 0 ile 9 arasında rastgele
bir sayı olacak şekilde (Şekil 8-
27) atadık. Burada, bir while
döngüsü kullanarak bilgisayarın 0
numaralı kareyi seçmesini
engelledik. Yani diziIndeksi 0
olduğu sürece döngü devam eder;
değer 0 olmadığında döngü
sonlanır.
Fonksiyonun dönüş değeri olarak
diziIndeksi belirlenmiş olup,
böylece bilgisayarın seçtiği
geçerli kare elde edilmiş ve
fonksiyon tamamlanmıştır.

Flowgorithm Uygulaması ile Algoritma Geliştirme

132

satirEsleme, sutunEsleme, caprazEsleme ve kazanan isimli boolean türünde
değişkenler oluşturduk. Başlangıçta bu değişkenlerin tümü false değerine sahiptir.
Ancak oyunda aynı satırda, sütunda veya çaprazda aynı semboller yan yana
geldiğinde, ilgili değişkenin değeri true olacak şekilde güncellenmelidir.

Kontrole satırlarla başlayalım. Bunun için satirHesapla(tahta, guncelOyuncu)
fonksiyonunu (Şekil 8-29) kullanarak tahtadaki satırları inceleyip, aynı sembollerin
yan yana gelip gelmediğini belirleyeceğiz.

Şekil 8-28 Kazananın kontrol edildiği fonksiyon

Flowgorithm Uygulaması ile Algoritma Geliştirme 133

Üç satırımız olduğu için, her satırı ayrı ayrı kontrol etmek amacıyla üç adet if yapısı
oluşturduk.

• Eğer tahta[0] == "X" ve tahta[1] == "X" ve tahta[2] == "X" veya tahta[0] ==
"O" ve tahta[1] == "O" ve tahta[2] == "O" ise, yani ilk satırda “XXX” veya
“OOO” oluşmuşsa, kazanan değişkeninin değeri true olarak atanır.

• İkinci satır için, tahta[3] == "X" ve tahta[4] == "X" ve tahta[5] == "X" veya
tahta[3] == "O" ve tahta[4] == "O" ve tahta[5] == "O" durumu
sağlandığında, kazanan değişkeni true olarak güncellenir.

• Üçüncü satır için ise, tahta[6] == "X" ve tahta[7] == "X" ve tahta[8] == "X"
veya tahta[6] == "O" ve tahta[7] == "O" ve tahta[8] == "O" kontrolü ile
kazanan değişkeni true olur.

Şekil 8-29 Satır sayısının hesaplandığı fonksiyon

Flowgorithm Uygulaması ile Algoritma Geliştirme

134

Bu şekilde, satırlar üzerinde kontrollerimizi tamamladık ve fonksiyonun dönüş
değişkeni olarak kazanan belirledik.

Sütunlarda aynı sembollerin alt alta gelip gelmediğini kontrol etmek için ise
sutunHesapla(tahta, guncelOyuncu) fonksiyonunu (Şekil 8-30) oluşturabiliriz.

Üç sütunumuz olduğu için, her sütunu ayrı ayrı kontrol etmek amacıyla üç adet if
yapısı oluşturduk.

• Eğer tahta[0] == "X" ve tahta[3] == "X" ve tahta[6] == "X" veya tahta[0] ==
"O" ve tahta[3] == "O" ve tahta[6] == "O" ise, yani ilk sütunda “XXX” veya
“OOO” oluşmuşsa, kazanan değişkeni true olarak atanır.

Öncelikle, oyunun kazananını
belirlemek için kazanan isimli bir
değişken tanımladık. Oyunda
semboller yan yana geldiğinde, bu
değişkenin değeri true olarak
güncellenecektir.

Şekil 8-30 Sütun sayısının hesaplandığı fonksiyon

Flowgorithm Uygulaması ile Algoritma Geliştirme 135

• İkinci sütun için, tahta[1] == "X" ve tahta[4] == "X" ve tahta[7] == "X" veya
tahta[1] == "O" ve tahta[4] == "O" ve tahta[7] == "O" durumu
sağlandığında, kazanan değişkeni true olur.

• Üçüncü sütun için ise, tahta[2] == "X" ve tahta[5] == "X" ve tahta[8] == "X"
veya tahta[2] == "O" ve tahta[5] == "O" ve tahta[8] == "O" kontrolü ile
kazanan değişkeni true değerini alır.

Bu şekilde sütun kontrollerini tamamladık ve fonksiyonun dönüş değeri olarak
kazanan belirlenmiştir.

Son olarak, çaprazda aynı semboller yan yana gelmiş mi diye kontrol etmek için
caprazHesapla(tahta, guncelOyuncu) fonksiyonunu (Şekil 8-31) oluşturabiliriz.

	

Şekil 8-31 Çapraz aynı sembollerin yan yana geldiğini kontrol eden fonksiyon

Öncelikle, oyunun kazananını
belirlemek için kazanan isimli bir
değişken tanımladık. Oyunda
semboller yan yana geldiğinde veya
kazanma koşulları sağlandığında, bu
değişkenin değeri true olarak
güncellenecektir.

Flowgorithm Uygulaması ile Algoritma Geliştirme

136

İki adet çapraz bulunduğu için, her çaprazı ayrı ayrı kontrol etmek amacıyla iki adet
if yapısı oluşturduk.

• Eğer tahta[0] == "X" ve tahta[4] == "X" ve tahta[8] == "X" veya tahta[0] ==
"O" ve tahta[4] == "O" ve tahta[8] == "O" ise, yani ilk çaprazda “XXX”
veya “OOO” oluşmuşsa, kazanan değişkeni true olarak atanır.

• İkinci çapraz için, tahta[2] == "X" ve tahta[4] == "X" ve tahta[6] == "X"
veya tahta[2] == "O" ve tahta[4] == "O" ve tahta[6] == "O" durumu
sağlandığında, kazanan değişkeni true olarak güncellenir.

Bu şekilde, kazananiKontrolEt fonksiyonunun alt fonksiyonlarını tamamlamış
olduk.

Son olarak, satirEsleme, sutunEsleme ve caprazEsleme değişkenlerinin değerlerini
kontrol ederek, herhangi birinin değeri true ise, kazanan değişkenini true yapacak
bir if kontrolü ekleyerek fonksiyonu Şekil 8-32’deki gibi sonlandırıyoruz.

	

Şekil 8-32 Kazananı kontrol eden fonksiyonun son kısmı

Artık kazananiKontrolEt fonksiyonumuzu ana fonksiyonumuzda çağırabiliriz. Hem
oyuncu hem de bilgisayar için kazanma durumunu kontrol etmemiz gerektiğinden,
her iki tarafın hamle fonksiyonlarının hemen altında bu fonksiyonu çalıştırıyoruz.

Flowgorithm Uygulaması ile Algoritma Geliştirme 137

Fonksiyondan dönen değeri kazanan değişkenimize atayarak, oyunun hangi
aşamada kazanıldığını takip edebiliriz.

	

Şekil 8-33 Ana fonksiyon 9. kısım

Şekil 8-33’de görüldüğü gibi, ana fonksiyonumuz içinde kazanan değişkeninin true
olması durumunda, while(oyunaDevamEdilsinMi) döngüsünü sonlandırmak için
her iki taraf için ayrı if kontrolleri ekledik. Kazanan değişkeni true olduğunda,
oyunaDevamEdilsinMi değişkenini false yaparak döngünün bitmesini sağlıyoruz.

Kodun ilerleyen aşamalarında, oyunu bilgisayarın mı yoksa kullanıcının mı
kazandığını konsol ekranına yazdırmak için kimKazandi isimli bir değişkene
ihtiyaç duyacağız. Bu değişken, kullanıcı kazanmışsa "X", bilgisayar kazanmışsa
"O" değeri alacak şekilde ayarlanmıştır.

Ayrıca, oyunun maksimum 8 turda kazanılması gerekmektedir. Eğer 8 tur sonunda
oyun bitmemişse, oyunun berabere sonuçlandığı kabul edilir. Bu kontrolü daha
sonra ekleyeceğiz. Şimdilik, kazanın belirlenebilmesi için turSayisi değişkenini 10
olarak belirledik.

.

Flowgorithm Uygulaması ile Algoritma Geliştirme

138

	

Şekil 8-34 Ana fonksiyon 10. kısım

Kazanan kontrollerini tamamladıktan sonra, tekrar tahtayı çiz fonksiyonunu Şekil
8-34’de görüldüğü gibi çağırdık. Oyunun 8 turdan fazla sürmemesi için, turSayisi
değişkeninin 9’dan küçük olduğu durumlarda bu değişkeni 1 artırıyor ve oyunun
devam etmesini sağlıyoruz.

Ancak, tur sayısı 8’i geçtiyse, artık yapılacak hamle kalmadığından kazanan
değişkenini false olarak ayarlıyoruz ve oyunun berabere sonuçlandığını kabul
ediyoruz.

Oynama sırasının kimin olduğunu belirlemek için oyuncu = !oyuncu ifadesini
kullanıyoruz. Döngü devam ettiği sürece, oyuncu değişkeni her adımda true ve
false arasında değişir. True olduğunda hamle sırası kullanıcıda, false olduğunda
ise hamle sırası bilgisayardadır.

Bu kontroller ve güncellemeler ile oyunun kimin kazandığını belirleyerek oyunu
tamamen Şekil 8-35’de kodlamış oluyoruz.

Flowgorithm Uygulaması ile Algoritma Geliştirme 139

	

Şekil 8-35 Ana fonksiyon 11. kısım

Eğer kazanan değişkeninin değeri false ise, konsol ekranında “Oyun berabere bitti”
mesajı yazdırılacaktır.

Eğer kazanan değişkeni true ise, kimKazandi değişkeninin değeri kontrol edilir:

• kimKazandi == "X" ise, oyunu kullanıcı kazanmıştır.
• kimKazandi == "O" ise, oyunu bilgisayar kazanmıştır.

Program çalıştırıldığında, konsol ekranında oyun sonucuna ilişkin çıktı bu şekilde
görüntülenecektir.

|7|8|9|

|4|5|6|

|1|2|3|

sıra sizde

Hangi Kare

1

|7|8|9|

|4|5|6|

|X|2|3|

|7|8|9|

|4|5|6|

|X|2|3|

Şimdi
bilgisayarın
hamlesi

|7|O|9|

|4|5|6|

|X|2|3|

Şimdi
oyuncunun
sırası

|7|O|9|

|4|5|6|

|X|2|3|

sıra sizde

Hangi Kare

Flowgorithm Uygulaması ile Algoritma Geliştirme

140

8.2.4 Oyunun	Python						Çıktısı	

import random
def caprazHesapla(tahta, guncelOyuncu):
 kazanan = False
 if tahta[0] == "X" and tahta[4] == "X" and tahta[8] == "X" or tahta[0] == "O"
and tahta[4] == "O" and tahta[8] == "O":
 kazanan = True
 else:
 if tahta[2] == "X" and tahta[4] == "X" and tahta[6] == "X" or tahta[2] == "O"
and tahta[4] == "O" and tahta[6] == "O":
 kazanan = True

 return kazanan

def kazananiKontrolEt(tahta, guncelOyuncu):
 satirEsleme = satirHesapla(tahta, guncelOyuncu)
 sutunEsleme = sutunHesapla(tahta, guncelOyuncu)
 caprazEsleme = caprazHesapla(tahta, guncelOyuncu)
 if satirEsleme or sutunEsleme or caprazEsleme:
 kazanan = True
 else:
 kazanan = False

 return kazanan

def oyuncuHamlesi(tahta):
 guncelOyuncu = "X"
 gecerli = False
 while gecerli == False:
 diziIndeksi = oyuncuKaresiSec()
 gecerli = oyuncuSecimiGecerliMi(tahta, diziIndeksi)
 tahtayiGuncelle(tahta, diziIndeksi, guncelOyuncu)

def oyuncuKaresiSec():
 print("Hangi Kare")
 diziIndeksi = int(input())

 return diziIndeksi

def oyuncuSecimiGecerliMi(tahta, diziIndeksi):
 gecerli = False

Flowgorithm Uygulaması ile Algoritma Geliştirme 141

 if tahta[diziIndeksi - 1] == "X" or tahta[diziIndeksi - 1] == "O":
 gecerli = False
 else:
 gecerli = True

 return gecerli

def pcHamlesi(tahta):
 guncelOyuncu = "O"
 gecerli = False
 while gecerli == False:
 diziIndeksi = pcKaresiSec()
 gecerli = oyuncuSecimiGecerliMi(tahta, diziIndeksi)
 tahtayiGuncelle(tahta, diziIndeksi, guncelOyuncu)
 print("Şimdi oyuncunun sırası")

def pcKaresiSec():
 diziIndeksi = int(random.random() * 9)
 while diziIndeksi == 0:
 diziIndeksi = int(random.random() * 9)

 return diziIndeksi

def satirHesapla(tahta, guncelOyuncu):
 kazanan = False
 if tahta[0] == "X" and tahta[1] == "X" and tahta[2] == "X" or tahta[0] == "O"
and tahta[1] == "O" and tahta[2] == "O":
 kazanan = True
 else:
 if tahta[3] == "X" and tahta[4] == "X" and tahta[5] == "X" or tahta[3] == "O"
and tahta[4] == "O" and tahta[5] == "O":
 kazanan = True
 else:
 if tahta[6] == "X" and tahta[7] == "X" and tahta[8] == "X" or tahta[6] ==
"O" and tahta[7] == "O" and tahta[8] == "O":
 kazanan = True

 return kazanan

def sutunHesapla(tahta, güncelOyuncu):
 kazanan = False

Flowgorithm Uygulaması ile Algoritma Geliştirme

142

 if tahta[0] == "X" and tahta[3] == "X" and tahta[6] == "X" or tahta[0] == "O"
and tahta[3] == "O" and tahta[6] == "O":
 kazanan = True
 else:
 if tahta[1] == "X" and tahta[4] == "X" and tahta[7] == "X" or tahta[1] == "O"
and tahta[4] == "O" and tahta[7] == "O":
 kazanan = True
 else:
 if tahta[2] == "X" and tahta[5] == "X" and tahta[8] == "X" or tahta[2] ==
"O" and tahta[5] == "O" and tahta[8] == "O":
 kazanan = True

 return kazanan

def tahtayiCiz(tahta):
 print("________")
 print("|" + tahta[6] + "|" + tahta[7] + "|" + tahta[8] + "|")
 print("|" + tahta[3] + "|" + tahta[4] + "|" + tahta[5] + "|")
 print("|" + tahta[0] + "|" + tahta[1] + "|" + tahta[2] + "|")
 print("________")

def tahtayiGuncelle(tahta, diziIndeksi, guncelOyuncu):
 tahta[diziIndeksi - 1] = guncelOyuncu
 print("|" + tahta[6] + "|" + tahta[7] + "|" + tahta[8] + "|")
 print("|" + tahta[3] + "|" + tahta[4] + "|" + tahta[5] + "|")
 print("|" + tahta[0] + "|" + tahta[1] + "|" + tahta[2] + "|")

Main
tahta = [""] * (10)

for index in range(0, 8 + 1, 1):
 tahta[index] = str(index + 1)
oyuncu = True
turSayisi = 1
kazananVarMi = True
dahaFazlaKare = False
oyunaDevamMi = True
tahtayiCiz(tahta)
while oyunaDevamMi:
 if oyuncu:
 print("sıra sizde")
 guncelOyuncu = "X"

Flowgorithm Uygulaması ile Algoritma Geliştirme 143

 oyuncuHamlesi(tahta)
 kazanan = kazananiKontrolEt(tahta, guncelOyuncu)
 if kazanan:
 kimKazandi = "X"
 oyunaDevamMi = False
 turSayisi = 10
 else:
 guncelOyuncu = "O"
 print("Şimdi bilgisayarın hamlesi")
 pcHamlesi(tahta)
 kazanan = kazananiKontrolEt(tahta, guncelOyuncu)
 if kazanan:
 kimKazandi = "O"
 oyunaDevamMi = False
 turSayisi = 10
 tahtayiCiz(tahta)
 if turSayisi < 9:
 turSayisi = turSayisi + 1
 oyunaDevamMi = True
 kimKazandi = "hiçkimse kazanamadı"
 else:
 oyunaDevamMi = False
 if kazanan:
 pass
 else:
 kazanan = False
 oyuncu = not oyuncu
if kazanan:
 if kimKazandi == "X":
 print("Kazandın")
 else:
 if kimKazandi == "O":
 print("pc kazandı")
else:
 print("Oyun berabere bitti")

Flowgorithm dosyasına ulaşmak için
karekodu okutunuz

Flowgorithm Uygulaması ile Algoritma Geliştirme

144

8.2.5 Ocak	Saati	Uygulaması	

Bir sayacın belirlenen dakikadan geriye doğru akması ve sıfıra ulaştığında bir eylemi
tetiklemesi prensibine dayanan bu uygulama, while döngülerinin pratik kullanımını
göstermektedir. İhtiyacımız olan değişkenler, akış şemamızda Şekil 8-36’da
görüldüğü gibi tanımlanmıştır.

	

Şekil 8-36 Ana fonksiyon 1. kısım

Değişkenler tanımlandıktan sonra, saat
yüzeyini çizebilmek amacıyla
saatYuzeyi(yaricap, derece, hassasiyet)
isimli bir fonksiyon oluşturuldu.
Bu fonksiyonu hemen kodlayarak saat
yüzeyini oluşturmaya başlayabilir ve
programımızı başlatabiliriz.

Flowgorithm Uygulaması ile Algoritma Geliştirme 145

	

Şekil 8-37 Çizdirilmek istenen saat tasarımı

Saatimizin tasarımını, Şekil 8-37’de gösterildiği gibi oluşturmak istiyoruz.
İmlecimiz başlangıç konumunda saat yüzeyinin tam ortasında yer almakta ve ileri
doğru bakacak şekilde ayarlanmıştır.

Flowgorithm Uygulaması ile Algoritma Geliştirme

146

	

Şekil 8-38 Saat yüzeyini çizen algoritma 1. kısım

Gerekli değişkenler Şekil 8-38’deki şemada tanımlandıktan sonra, imlecimizi
başlangıç noktasında sola doğru döndürerek yarıçap uzunluğu kadar ilerlettik. Daha
sonra imleci tekrar ileri doğru döndürerek çemberi çizmeye hazır hale getirdik.

Çemberdeki iki derece arasında toplamda 60 yay uzunluğu bulunmaktadır. Bu
uzunlukları hesaplayabilmek için çemberin çevresini 360’a bölerek yayUzunlugu
değişkeninin değerini belirledik.

Çemberin çevresi ise, Çevre = 2 × π × r formülü ile hesaplanmaktadır.

Flowgorithm Uygulaması ile Algoritma Geliştirme 147

	

Şekil 8-39 Saat yüzeyini çizen algoritma 2. kısım

Şekil 8-38’de verilen şemada bir for döngüsü tanımlanmıştır. Bu döngü, 1’den
başlayarak, girdiğimiz derece değişkeninin değeri kadar, yani 360 kez tekrar
edecektir. Ana programda hassasiyet değişkeninin değeri 1 olarak
tanımlandığından, döngü her adımda 1 derece sağa dönüp, hesaplanan yayUzunlugu
kadar çizim yapacaktır.

Ancak bu şekilde yalnızca düz bir çember çizmiş oluruz. Çember üzerindeki
çentikleri oluşturmak için centikCiz fonksiyonunu (Şekil 8-40) tanımlamamız
gerekmektedir.

Flowgorithm Uygulaması ile Algoritma Geliştirme

148

	

Şekil 8-40 Saat yüzeyindeki çentikleri çizen algoritma 1. kısım

İlk olarak centikUzunlugu isimli bir değişken tanımladık. Bu değişken, saat 1–12
arasındaki sayıları gösteren çizgilerde 10 birim, ara değerlerde ise 5 birim
uzunluğunda olacak şekilde ayarlanacaktır.

saatYuzeyi fonksiyonundaki for döngüsünde, döngüdeki her adımı i değişkeni ile
göstermiştik. Bu i değişkenini, centikCiz fonksiyonunun aci parametresine atayarak
fonksiyonu çağırdık. Böylece aci değişkeni 1’den 360’a kadar değer alacaktır.

Ancak her açı için çentik çizmek istemiyoruz. Bunun için bir if kontrolü ile yalnızca
6’nın katı olan derecelerde çentik çizilmesini sağladık (aci MOD 6). Ayrıca saat 1–
12’yi temsil eden uzun çizgiler için, 30’un katı olan açılarda centikUzunlugu
değerini 10, diğer açılarda 5 olacak şekilde ayarladık (aci MOD 30 <> 0).

Gerekli ayarlamaları yaptıktan sonra çentik çizimine geçebiliriz.

Flowgorithm Uygulaması ile Algoritma Geliştirme 149

	

Şekil 8-41 Saat yüzeyindeki çentikleri çizen algoritma 1. kısım

Çentik çizme işlemi tamamlandıktan sonra saatYuzeyi fonksiyonumuza geri
dönerek, fonksiyonun kalan işlemlerini Şekil 8-42’deki gibi tamamlayabiliriz.

	

Şekil 8-42 Saat yüzeyini çizen algoritma 3. kısım

Saat yüzeyini çizdikten sonra, imleci tekrar ana fonksiyona (Şekil 8-43)
yönlendiriyoruz.

saatYuzeyi fonksiyonundaki
döngü sırasında, i değeri yalnızca
6’nın katı olduğunda çizim işlemi
gerçekleşecektir. İmlecimiz düz
ilerlerken sağa dönecek ve i
değeri 6’nın katı ise ara çizgi
olarak 5 birim, 30’un katı ise
saatleri gösteren uzun çizgi
olarak 10 birim uzunluğunda
centikUzunlugu kalem aşağı
konumundayken çizilecektir.
Çizim tamamlandıktan sonra
imleç, çizilen uzunluk kadar geri
gidip kalem yukarı konumunda
ilerleyecek ve tekrar sağa
dönerek saatin çemberini çizme
işlemine devam edecektir. Süreç
sonrası oluşan algoritma Şekil 8-
41’deki gibi olmaktadır.

Yazdığımız for döngüsü, 360 kez tekrarlanarak çember
ve çentik çizimlerini tamamlayacaktır. Ancak döngü
sona erdiğinde imleç, çemberi çizmeye başladığı
konumda kalmaktadır. İmleci tekrar çemberin
merkezine taşımak için, sağa döndürme, kalemi yukarı
konuma alma, yarıçap uzunluğu kadar ileri gitme ve sola
dönme bloklarını uygun şekilde ekleyerek saatYuzeyi
fonksiyonumuzu tamamlıyoruz.

Flowgorithm Uygulaması ile Algoritma Geliştirme

150

	

Şekil 8-43 Ana fonksiyon 2. kısım

Bu bir ocak saati uygulaması olduğundan,
kullanıcıdan ocağın ne kadar süreyle açık
kalması gerektiğini öğrenmemiz gerekiyor. Bu
süreyi saat, dakika ve saniye olarak ayrı ayrı
aldıktan sonra, en sonunda tüm süreyi saniye
cinsine çevirerek işlemlerimize devam edeceğiz.
Kullanıcıdan gerekli değerleri aldıktan sonra,
dakika değerini 60 ile, saat değerini ise 3600 ile
çarparak ve ardından çıkan sonuçlara girilen
saniye değerini ekleyerek, toplam süreyi saniye
cinsinden hesaplamış oluruz.
Bilgi:

• 1 saat = 3600 saniye
• 1 dakika = 60 saniye

Kullanıcıdan gerekli bilgileri alıp
süreyi saniye cinsinden
hesapladıktan sonra, programın
animasyonunun saniye = 0
olduğunda sona ermesini istiyoruz.
Bir if kontrolü ile, saniye değeri
0’dan büyükse, değerini negatif
olacak şekilde işaretledik. Örneğin,
kullanıcı 60 saniye girerse, bu değeri
-60 olacak şekilde değiştirdik. Artık
animasyon(saniye, sureYenileme,
yaricap) fonksiyonumuzu (Şekil 8-
44) yazmaya hazırız.

Flowgorithm Uygulaması ile Algoritma Geliştirme 151

	

Şekil 8-44 saat animasyonunu gerçekleştiren algoritma 1. kısım

Gerekli değişkenleri tanımladıktan sonra, konumuAyarla(saniye) isimli
fonksiyonumuzu çağırarak devam edelim. Bu fonksiyonu çağırmamızın nedeni,
imlecin başlangıçta merkezde ve ileriye bakar konumda durmasıdır. İmleci,
geçeceği çentiğin yönüne doğru döndürmek için konumuAyarla(saniye)
fonksiyonunu kullanıyoruz. Şimdi, bu fonksiyonu (Şekil-45) tanımlayalım.

	

Şekil 8-45 Saat imlecinin konumunu ayarlayan algoritma

Fonksiyonumuzu oluşturmaya, bir k değişkeni tanımlayarak başlayalım. İmlecimiz,
k değişkeninin değeri kadar sağa doğru dönecek. Örnekle açıklayacak olursak:

Flowgorithm Uygulaması ile Algoritma Geliştirme

152

kullanıcı 15 saniyelik bir süre girmiş olsun. Bu durumda imlecimiz saat 9 yönüne
bakmalıdır. Ana fonksiyonumuzda bu değeri -15 olarak ayarlamıştık.

Hesaplama süreci:

𝑘 = 360 + (−15) = 345

345 × 6 = 2070

Bir tam tur 360 derece olduğuna göre, 2070 = 360 × 5 + 270 olarak yazılabilir.

Bu, imlecimizin kendi etrafında sağa doğru 5 tam tur döneceği ve 6. turunda 270
derecelik açı yaparak duracağı anlamına gelir. Sonuç olarak, imlecimiz tam olarak
istediğimiz saat 9 yönüne bakmış olur.

İmlecimizin başlangıç yönünü ayarladığımıza göre, animasyonumuza devam
edebiliriz.

	

Şekil 8-46 saat animasyonunu gerçekleştiren algoritma 2. kısım

İlk olarak, while döngüsü tanımlayarak (Şekil 8-46) başladık. Bu döngü, boolean
türündeki hareketDurumu değişkenimizin değeri true olduğu sürece çalışacaktır.
While döngüsünün içine bir for döngüsü ekledik. Bu döngü, ana programdan gelen
ve değerini negatif olarak aldığımız saniye değerinden başlayıp 0’a kadar devam
edecektir.

Flowgorithm Uygulaması ile Algoritma Geliştirme 153

For döngüsünün içine bir if kontrol fonksiyonu yerleştirdik. Eğer i değeri -1’e eşit
veya küçükse, imlecimiz hareket etmeye devam edecektir. If fonksiyonu içindeki
boş for döngüsü ise 1’den başlayarak ana fonksiyonumuzdan gelen sureYenileme
değişkeninin değerine kadar çalışacaktır. sureYenileme değişkeninin değerini
12.800 olarak belirlemiştik. Bu sayede imlecimiz, iki çentik arasını yaklaşık bir
saniyede kat etmektedir. Eğer çemberin yarıçapı 100’den büyük olursa,
sureYenileme değişkeninin değerini 2.500 olarak ayarlamak gerekir.

İmlecin hareket animasyonunu gerçekleştirmek için imleci i değeri kadar sola
döndürüyor ve tekrar başlangıç konumuna getiriyoruz. Ardından, konumuAyarla
fonksiyonunda i değerine 1 ekleyerek imlecin bir birim ilerlemesini sağlıyoruz.
Program bu şekilde çalıştırıldığında, imlecin çember üzerinde düzgün bir şekilde
hareket ettiğini görürüz.

İmleci çember üzerinde değil, çemberin biraz daha içinde ve doğru çentiklerin
altında hareket ettirmek için ise imleciGeriAl fonksiyonunu çağırıyoruz. Şimdi bu
fonksiyonu tanımlayalım.

	

Şekil 8-47 İmleci merkeze taşıyan algoritma

Bu fonksiyon Şekil (8-47) ile amacımız, imleci yarıçapın
20 birim eksiği kadar geri almaktır. yaricap değerinden
20 çıkararak fonksiyonumuzu tanımlamış olduk.

Flowgorithm Uygulaması ile Algoritma Geliştirme

154

Son olarak, program çalışıp süre tamamlandığında kullanıcıyı uyarmak amacıyla
ana fonksiyonun sonuna “Ocağın altını kapat, yemek hazır” şeklinde bir çıktı
ekledik ve böylece program tamamlanmış oldu.

Program çalıştığında, konsol ekranı ve grafik pencere aşağıdaki gibi (Şekil 8-48)
görünmektedir.

	

Şekil 8-48 Programın genel çıktısı

Flowgorithm dosyasına ulaşmak için
karekodu okutunuz

Flowgorithm Uygulaması ile Algoritma Geliştirme 155

8.2.6 Adam	Asmaca	Oyunu	

Okul yıllarında kâğıt kalemle oynadığımız o meşhur oyunu dijital dünyaya taşıma
zamanı! Bu projede, gizli kelimeyi harf harf tahmin ederken hem çocukluğumuza
dönecek hem de programlama kaslarımızı çalıştıracağız. İhtiyacımız olan
değişkenleri tanımlayarak (Şekil 8-49) oyunumuzu başlatıyoruz.	

Şekil 8-49 Program için gerekli olan değişken isimleri

Oyunumuzda, seçilen kelimeyi ve kullanıcıya kaç kez yanlış yapma hakkı
verileceğini belirlemek için girilenKelime ve denemeSayisi değişkenlerinin

Flowgorithm Uygulaması ile Algoritma Geliştirme

156

değerlerini kullanıcıdan aldık. harfSayisi değişkenimizin değerini, girilenKelime
değişkeninin uzunluğu yani karakter sayısı kadar olacak şekilde belirledik.

kelimeninHarfleri dizisinin boyutunu harfSayisi değişkeni belirleyecek şekilde
ayarladık. Son olarak, boolean türündeki harfBulunduMu dizisinin boyutunu da
yine harfSayisi değişkenine göre tanımladık.

Gerekli ayarlamaları yaptıktan sonra, kullanıcının girdiği kelimenin harflerini
dizinin elemanlarına aktaran fonksiyonumuzu akış şemamıza ekliyor ve
fonksiyonumuzu tanımlamaya Şekil 8-50 ile başlıyoruz.

	

Şekil 8-50 Kullanıcının girdiği kelimedeki harfleri diziye toplayan fonksiyon

diziyeCevir fonksiyonunda ilk olarak metinUzunlugu isimli bir değişken
tanımladık. Bu değişkenin değerini, girilenKelime değişkenindeki harf sayısına eşit
olacak şekilde ayarladık.

Daha sonra bir for döngüsü başlattık. Bu döngü, 0’dan başlayarak girilenKelime
uzunluğunun 1 eksiğine kadar devam edecektir. Ana fonksiyonumuzda
tanımladığımız kelimeHarfleri dizisine, girilenKelime harflerini eleman olarak
göndermek için bu döngüyü kullanacağız.

Girilen kelimenin harflerini almak amacıyla kelimedenHarfAl fonksiyonunu
kullandık. Şimdi fonksiyonumuzu tanımlayarak devam edelim.

Flowgorithm Uygulaması ile Algoritma Geliştirme 157

Şekil 8-51’de görüldüğü üzere,
gerekli değişkenleri tanımlayarak
fonksiyonu yazmaya başlıyoruz.

Flowgorithm Uygulaması ile Algoritma Geliştirme

158

	

Şekil 8-51 kelimedeki harfleri dizinin elemanı yapan fonksiyon

Süreci, bir while döngüsü tanımlayarak başlatıyoruz. Bu döngü, girilenKelime
değişkeninin harf sayısının bir eksiğine ulaşana kadar ve diziOlustur fonksiyonuna
miktar değişkenini '1' olarak gönderdiğimiz için sayaç 1’den küçük olduğu sürece
çalışmaya devam edecektir.

Döngü içerisine bir if kontrol bloğu ekledik. Eğer i değeri, bir önceki i değerinden
büyükse; girilenKelime değişkeninin o anki sırasındaki elemanı, alinanHarf
değişkenine atanacaktır.

Bu işlemleri bir örnek üzerinden somutlaştıralım:

Kullanıcının girdiği kelimenin 'Selim' olduğunu varsayalım. Döngümüz $i=0$ ile
başladığı için, kelimenin 0. indisindeki eleman, yani ilk harf olan 's' işleme alınır.
Böylece alinanHarf değişkeni 's' değerini alır. Aynı zamanda diziyeCevir
fonksiyonunda yaptığımız tanımlama sayesinde kelimeHarfleri[0] da 's' değerine
eşitlenir.

Flowgorithm Uygulaması ile Algoritma Geliştirme 159

'Selim' kelimesi 5 harfli olduğu için döngü 5 kez tekrar edecek; 0, 1, 2, 3 ve 4 indisli
elemanları şu şekilde oluşturacaktır:

• kelimeHarfleri[0] = "s"
• kelimeHarfleri[1] = "e"
• kelimeHarfleri[2] = "l"
• kelimeHarfleri[3] = "i"
• kelimeHarfleri[4] = "m"

Böylece kullanıcının girdiği kelimenin harflerini tanımlamış olduk. Şimdi sırada,
oyuncunun tahmin ettiği harfin doğruluğunu kontrol etmek var. Bu işlem için
boolean türünde harfBulunduMu isminde bir dizi tanımlamıştık. Oyun başladığında
bu dizinin tüm elemanlarına varsayılan olarak false değerini atamamız gerekiyor.
Bunun için boolDizisiOlustur fonksiyonunu ana bloğumuzda çağıralım ve
fonksiyonu oluşturmaya başlayalım.

	

Şekil 8-52 Kullanıcının girdiği harfin doğruluğunu kontrol eden fonksiyon

Flowgorithm Uygulaması ile Algoritma Geliştirme

160

Şekil 8-52’de görüldüğü üzere, bu fonksiyon parametre olarak bizden bir dizi ve bir
boolean değer beklemektedir. Ana fonksiyonumuzda bu metodu çağırırken
harfBulunduMu dizisini kullanmıştık. Hatırlayacağınız gibi, bu dizinin boyutu
girilenKelime değişkeninin harf sayısına (uzunluğuna) eşitlenmişti.

Kod bloğundaki for döngüsü, 0’dan başlayıp harf sayısının bir eksiğine kadar
devam edecek ve dizimizin bütün indis değerlerini false olarak güncelleyecektir.

Örneğin; 4 harfli bir kelime girildiğinde, oluşan değerler aşağıdaki gibi olacaktır:

• harfBulunduMu[0] = false
• harfBulunduMu[1] = false
• harfBulunduMu[2] = false
• harfBulunduMu[3] = false

	

Şekil 8-53 Ana fonksiyon 2. kısım

	

Şekil 8-54 Ana fonksiyon 3. kısım

Süreci bir while döngüsü kurarak (Şekil 8-54) başlatıyoruz. Bu döngü,
denemeSayisi 0’a düşmediği ve oyunBittiMi değişkeni henüz true olmadığı (yani
oyun sonlanmadığı) sürece çalışmaya devam edecektir.

Gerekli hazırlıkları tamamladığımıza göre, artık
ana fonksiyon içerisinde (Şekil 8-53) ilgili
metotları çağırarak oyunu çalıştırabiliriz

Flowgorithm Uygulaması ile Algoritma Geliştirme 161

Döngü bloğunun içerisinde; kullanıcıya gerekli yönlendirmeyi yaparak, tahmin
ettiği harfi girmesini sağlıyor ve bu girdiyi girilenHarf değişkenine atıyoruz.	

	

Şekil 8-55 Ana fonksiyon 4. kısım

Kullanıcı tarafından girilen harfin, önceki aşamalarda oluşturduğumuz
kelimeHarfleri dizisinde bulunup bulunmadığını kontrol etmek için bir if bloğu
açıyoruz.

Kontrol şartı olarak varMi isimli fonksiyonumuzu (Şekil 8-55) çağıracağız. Bu
fonksiyon; parametre olarak kelimeHarfleri, girilenHarf, harfSayisi ve
harfBulunduMu değişkenlerine ihtiyaç duymaktadır. if kontrol yapısının
detaylarına girmeden önce, gelin varMi fonksiyonunu Şekil 8-56’da oluşturalım.

Flowgorithm Uygulaması ile Algoritma Geliştirme

162

	

Şekil 8-56 Kullanıcının kalan hakkını kontrol eden fonksiyon

Her zamanki gibi, fonksiyonumuzu gerekli değişkenleri tanımlayarak başlatıyoruz.
Tanımlamaların ardından, 0’dan başlayıp harfSayisinın bir eksiğine kadar devam
edecek bir for döngüsü kuruyoruz.

Döngü içerisinde bir if kontrol bloğu kullanarak şu sorguyu yapıyoruz: Eğer
kullanıcının girdiği harf (girilenHarf), kelimeHarfleri dizisinin o anki sırasındaki
(i) elemanına eşitse; harfBulunduMu dizisinin ilgili indisini true olarak
güncelliyoruz.

Örnek: Kelimemiz 'Selim', kullanıcının girdiği harf ise 's' olsun.

kelimeHarfleri[0] değeri 's' olduğundan, eşleşme sağlanır ve harfBulunduMu[0]
değeri true olur. Böylece varMi fonksiyonumuz, işlemin sonunda true değerini
döndürür.

Şimdi ana fonksiyonumuza (Şekil 8-57) dönelim.

Flowgorithm Uygulaması ile Algoritma Geliştirme 163

Harf Bulunamazsa: varMi fonksiyonu false dönerse, denemeSayisi 1 azaltılır ve
kalan hak bilgisi konsola yazdırılır.

Harf Bulunursa: Fonksiyon true dönerse, başlangıçta _ _ _ _ _ şeklinde gizli olan
kelimeyi güncellememiz gerekir.

Bu güncelleme işlemi için String türündeki s değişkenimizi (görüntülenen kelimeyi)
önce boş ("") olarak sıfırlıyoruz. Ardından bir for döngüsü ile tüm indisleri
tarıyoruz:

Eğer harfBulunduMu[i] true ise (yani harf bilindiyse), s değişkenine gerçek harfi
(kelimeHarfleri[i]) ekliyoruz.

Eğer false ise, s değişkenine tire (-) ekleyerek harfi gizli tutuyoruz.

Örneğimizde 's' harfi bilindiği için 0. indis açılır, diğerleri kapalı kalır. Sonuçta
konsol ekranına şu çıktı verilir:

s----

	

Şekil 8-57 Ana fonksiyon 5. kısım

Oyunun kazanılıp kazanılmadığını tespit etmek için boolean türünde kazanildiMi
adında bir değişken tanımlamıştık. Kontrol mantığımız şu şekilde işleyecek:

Flowgorithm Uygulaması ile Algoritma Geliştirme

164

Oyuncunun oyunu kazandığını varsayarak başlayacağız, eğer tek bir harf bile
eksikse bu varsayımı bozacağız.

Bu nedenle kazanildiMi değişkenine true, sayaç değişkenimiz olan i’ye ise 0
değerini atayarak ilerliyoruz.

Bir while döngüsü başlatıyoruz. Bu döngü, i değeri kelimenin harf sayısından
küçük olduğu sürece çalışacak. Döngü içerisinde bir if bloğu ile harfBulunduMu
dizisinin o anki elemanını (harfBulunduMu[i]) kontrol ediyoruz.

Eğer dizide 'false' değerine sahip bir elemana rastlarsak (yani henüz bulunmamış
bir harf varsa), oyun henüz bitmemiş demektir. Bu durumda kazanildiMi
değişkenini false olarak güncelliyoruz.

Döngünün sürekliliğini sağlamak ve bir sonraki harfi kontrol etmek için, if
bloğunun dışında i değerini 1 artırarak (i = i + 1) işlemlerimize devam ediyoruz.

	

Şekil 8-58 Ana fonksiyon 6. kısım

Artık kodlamamızın son ve en heyecanlı kısmına geldik. Bir if kontrol bloğu (Şekil
8-58) açarak oyunun sonucunu değerlendiriyoruz.

Eğer kazanildiMi değişkeninin değeri true ise; kullanıcıya 'Kazandınız' mesajını ve
doğru kelimeyi gösteriyoruz. Ardından oyunBittiMi değişkenini true yaparak, ana
programda kurduğumuz ilk while döngüsünü sonlandırıyor ve oyunu başarıyla
tamamlıyoruz.

Diğer senaryoda; eğer kazanildiMi değeri false ise ve denemeSayisi 0'a düşmüşse,
kullanıcıya 'Kaybettiniz' mesajını iletiyoruz. Bu durumda denemeSayisi artık 0

Flowgorithm Uygulaması ile Algoritma Geliştirme 165

olduğu için, ana döngümüzün 'deneme sayısı 0 olmadığı sürece' şartı bozuluyor ve
döngü otomatik olarak sonlanıyor.

Böylece oyunumuzun kodlamasını tamamlamış oluyoruz.

Programın çalışması tamamlandığında, konsol ekranı aşağıdaki gibi görünecektir.

8.2.7 Programın	Python	Çıktısı	

def boolDizisiOlustur(dizi, yanlis):

 uzunluk = len(dizi)

 for i in range(0, uzunluk - 1 + 1, 1):

 dizi[i] = False

def diziyeCevir(girilenKelime, kelimeHarfleri):

 metinUzunlugu = len(girilenKelime)

 for i in range(0, metinUzunlugu - 1 + 1, 1):

 kelimeHarfleri[i] = kelimedenHarfAl(girilenKelime, i + 1, 1)

Flowgorithm Uygulaması ile Algoritma Geliştirme

166

def kelimedenHarfAl(girilenKelime, baslangic, miktar):

 i = 0

 alinanHarf = ""

 sayac = 0

 while i <= len(girilenKelime) - 1 and sayac < miktar:

 if i >= baslangic - 1:

 alinanHarf = alinanHarf + girilenKelime[i]

 sayac = sayac + 1

 i = i + 1

 girilenKelime = alinanHarf

 return girilenKelime

def varMi(kelimeHarfleri, girilenHarf, harfSayisi, harfBulunduMu):

 tamamlandi = False

 for i in range(0, harfSayisi - 1 + 1, 1):

 if kelimeHarfleri[i] == girilenHarf:

 harfBulunduMu[i] = True

 tamamlandi = True

 return tamamlandi

Main

harfSayisi = -1

oyunBittiMi = False

Flowgorithm Uygulaması ile Algoritma Geliştirme 167

print("Tahmin edilecek kelimeyi giriniz")

girilenKelime = input()

print("Kaç deneme hakkı olsun?")

denemeSayisi = int(input())

harfSayisi = len(girilenKelime)

kelimeninHarfleri = [""] * (harfSayisi)

harfBulunduMu = [False] * (harfSayisi)

diziyeCevir(girilenKelime, kelimeninHarfleri)

boolDizisiOlustur(harfBulunduMu, False)

while denemeSayisi != 0 and oyunBittiMi == False:

 print("Tek bir karakter giriniz")

 girilenHarf = input()

 if varMi(kelimeninHarfleri, girilenHarf, harfSayisi, harfBulunduMu):

 s = ""

 for i in range(0, harfSayisi - 1 + 1, 1):

 if harfBulunduMu[i] == True:

 s = s + kelimeninHarfleri[i] + " "

 else:

 s = s + " - "

 print(s)

 else:

 denemeSayisi = denemeSayisi - 1

 print(str(denemeSayisi) + " " + "deneme hakkı kaldı!")

Flowgorithm Uygulaması ile Algoritma Geliştirme

168

 kazanildiMi = True

 i = 0

 while i < harfSayisi:

 if not harfBulunduMu[i]:

 i = harfSayisi + 1

 kazanildiMi = False

 i = i + 1

 if

kazanildiMi == True:

 print("Kazandınız!")

 print("Doğru kelime: " + girilenKelime)

 oyunBittiMi = True

 else:

 if denemeSayisi == 0:

 print("Kaybettiniz!")

Flowgorithm dosyasına ulaşmak için
karekodu okutunuz.

Flowgorithm Uygulaması ile Algoritma Geliştirme 169

8.2.8 Bir	Belgede	Kelime	Arama	Uygulaması	

Günlük hayatta kullandığımız 'Ctrl+F' (Bul) fonksiyonunun arkasında aslında nasıl
bir mekanizma çalışıyor? Bu uygulamada, devasa metin yığınları içerisinden
istediğimiz anahtar kelimeyi saniyeler içinde bulup çıkaran kendi mini arama
motorumuzu tasarlayacağız.

	

Şekil 8-59 Ana fonksiyon 1. kısım

Programı yazmaya başlamadan önce, hazırlık aşaması olarak meyveler.txt adında
yeni bir metin belgesi oluşturalım. Belgenin içerisine, alt alta gelecek şekilde birkaç
meyve ismi yazıp dosyayı kaydedelim.

	

Şekil 8-60 Ana fonksiyon 2. kısım

Programımıza, ana fonksiyon içerisinde ihtiyaç
duyduğumuz değişkenleri tanımlayarak (Şekil
8-59) başlıyoruz. arananBelge adlı değişkene,
üzerinde çalışacağımız belgedeki verileri
aktaracağız

Gerekli değişken atamalarının hemen
ardından meyveler.txt dosyasını okuma
modunda Şekil 8-60’ta görüldüğü gibi
açıyoruz.
Önemli Not: Programın hatasız
çalışabilmesi için oluşturduğumuz metin
belgesi ile Flowgorithm proje dosyasının
bilgisayarda aynı klasör içerisinde (aynı
konumda) bulunması gerekmektedir.
Dosya bağlantısını sağladıktan sonra,
kullanıcıdan aramak istediği veriyi
girmesini istiyor ve bu değeri
arananKelime değişkenine atıyoruz.

Flowgorithm Uygulaması ile Algoritma Geliştirme

170

	

Şekil 8-61 Ana fonksiyon 3. kısım

Programın akışında bir while döngüsü (Şekil 8-61) başlatıyor ve döngü koşulu
olarak NOT EOF() (Dosya Sonu Değil) ifadesini kullanıyoruz. Bu dahili fonksiyon,
dosyanın sonuna ulaşılmadığı sürece döngünün çalışmaya devam etmesini sağlar.

Döngü içerisine bir 'Oku' (Read) bloğu ekleyerek, meyveler.txt dosyasındaki
verileri satır satır okuyor ve bu verileri arananBelge değişkenine aktarıyoruz.

Döngünün her adımında, işlem yapılan satırın sırasını takip edebilmek adına
satirNumarasi değişkeninin değerini 1 artırıyoruz.

Kullanıcının aradığı kelimeyi tespit etmek amacıyla kelimeAra fonksiyonunu
çağırıyor ve fonksiyondan dönen sonucu kelimePozisyonu değişkenine atıyoruz.

Şimdi, programın akışına kelimeAra fonksiyonunu (Şekil 8-62) oluşturarak devam
edelim.

Flowgorithm Uygulaması ile Algoritma Geliştirme 171

	

Şekil 8-62 Kelime arama fonksiyonu 1. kısım

Fonksiyonumuz için gerekli değişkenleri tanımlayarak başlıyoruz. Bu fonksiyon,
işlem yapabilmek için parametre olarak bizden üç farklı değer beklemektedir:
baslangicPozisyonu, arananBelge ve arananKelime.

Ana fonksiyonda (Main) bu fonksiyonu çağırırken, parametreleri sırasıyla şu
şekilde gönderiyoruz:

Başlangıç Pozisyonu: Aramaya baştan başlamak için.

Belge İçeriği: Ana fonksiyondaki arananBelge değişkeninin değeri.

Aranan Kelime: Kullanıcının girdiği arananKelime değişkeninin değeri.

Flowgorithm Uygulaması ile Algoritma Geliştirme

172

	

Şekil 8-63 Kelime arama fonksiyonu 2. kısım

Fonksiyonun devamında bir while döngüsü (Şekil 8-63) başlatıyoruz. Bu döngünün
çalışma şartı; i değerinin, arananBelge uzunluğu ile arananKelime uzunluğu
arasındaki farkın 1 fazlasından küçük olmasıdır.

Peki, neden böyle bir şart koyduk? Amacımız, kullanıcının girdiği kelimenin harf
sayısını baz alarak belgemizi parçalara ayırmak ve taramaktır. Eğer oluşturulan bu
parçalar taranıp biterse döngüden çıkılmasını istiyoruz.

Örnekle Açıklayalım: Belgemizde sadece 'elma' (4 harfli) yazdığını, kullanıcının
ise 'bu' (2 harfli) kelimesini aradığını varsayalım. Döngü sınırımız: 4- 2 + 1 = 3
olacaktır. Yani 'elma' kelimesi 2'şerli gruplara ayrıldığında şu 3 parça ortaya çıkar:

1. 'el'
2. 'lm'
3. 'ma'

Bu durumda döngünün 3 kez çalışması tüm ihtimalleri kontrol etmek için yeterlidir.

Şimdi bahsettiğimiz bu parçaları kod üzerinde oluşturalım. Parçalama işlemi için
parcaAl fonksiyonunu (Şekil 8-64) çağırıyor ve dönen değeri alinanParcalar
değişkenine atıyoruz.

Flowgorithm Uygulaması ile Algoritma Geliştirme 173

	

Şekil 8-64 Parça al fonksiyonu 1. kısım

Bu fonksiyon, işlem yapabilmek için bizden parametre olarak 3 farklı değer
beklemektedir: arananBelge, baslangicPozisyonu ve miktar.

Fonksiyonu çağırırken gönderdiğimiz değerler ise sırasıyla şöyledir:

1. arananBelge: meyveler.txt dosyasından okuyup değişkene aktardığımız
veriler.

2. baslangicPozisyonu: kelimeAra fonksiyonundaki döngü sayacımız olan i
değeri.

3. miktar: arananKelime değişkeninin harf sayısı (uzunluğu).

Gerekli değişken tanımlamalarını ve eşleşmeleri yaptıktan sonra fonksiyonun
kodlarını yazmaya Şekil 8-65 ile devam ediyoruz.

Flowgorithm Uygulaması ile Algoritma Geliştirme

174

	

Şekil 8-65 Parça al fonksiyonu 2. kısım

Hatırlayacağınız üzere, girilenKelime değişkeninin karakter sayısını (uzunluğunu)
miktar değişkenine atamıştık. Şimdi bu değer üzerinden bir kontrol sağlıyoruz.

Eğer miktar 0 ise, yani kullanıcı herhangi bir veri girmemişse akış şemanın sol
tarafındaki döngüye yönlenecektir. Eğer en az 1 harf girilmişse, akış sağ taraftaki
döngü üzerinden devam edecektir.

Gelin, öncelikle sol taraftaki (girdi olmayan) durumu inceleyelim.

Flowgorithm Uygulaması ile Algoritma Geliştirme 175

	

Şekil 8-66 Kelime arama fonksiyonu 3. kısım

İşlemi gerçekleştirmek için bir while döngüsü (Şekil 8-66) tanımlıyoruz. Bu
döngünün çalışmaya devam etmesi için iki temel şartımız var:

1. i değişkeninin, belgedeki toplam karakter sayısının 1 eksiğinden küçük
olması,

2. sayac değişkeninin, aranan kelimenin harf sayısından (uzunluğundan) küçük
olması.

Döngü içerisine bir if kontrol bloğu yerleştiriyoruz. Eğer i değeri
baslangicPozisyonu değerinden büyükse (veya eşitse); sonucDegiskenine,
arananBelge içerisindeki i. sıradaki karakteri ekleyerek birleştirme yapıyoruz.

Konuyu bir örnekle somutlaştıralım: Metin belgemizin içerisinde sadece 'Alper'
yazdığını varsayalım. Kullanıcı ise aranan kelime olarak 'Alp' (3 harfli) girmiş
olsun.

Program, 'Alper' kelimesini 3'erli gruplar halinde tarayacak ve sonucDegiskeni
(veya sonuç dizisi) sırasıyla şu parçaları oluşturacaktır:

• 1. Parça: 'Alp'
• 2. Parça: 'lpe'
• 3. Parça: 'per'

Flowgorithm Uygulaması ile Algoritma Geliştirme

176

	

Şekil 8-67 Parça al fonksiyonu 3. kısım

Akış şemasının sol kolunda yer alan Şekil 8-67’de görüldüğü gibi while döngüsü
ise; metin belgemizdeki boşluk karakterlerini tespit ederek, bu değerleri
sonucDizisi değişkenine atayacaktır.

Hatırlayacağınız üzere parcaAl fonksiyonu, tamamlandığında arananBelge
ismindeki değişkeni geri döndürecek (return) şekilde ayarlanmıştı. Bu nedenle,
döngü sonunda elde ettiğimiz sonucDizisi değerini, dönüş değişkenimiz olan
arananBelgeye eşitleyerek fonksiyonu sonlandırıyoruz.

parcaAl fonksiyonundaki işlemlerimizi tamamladık. Şimdi kelimeAra
fonksiyonuna geri dönüyor ve akışa, fonksiyonu çağırdığımız satırın hemen
ardından Şekil 8-68 ile devam ediyoruz.

Flowgorithm Uygulaması ile Algoritma Geliştirme 177

	

Şekil 8-68 Parça al fonksiyonu 4. kısım

Döngü içerisine bir if kontrol bloğu ekleyerek asıl sorgumuzu yapıyoruz: Elde
ettiğimiz alinanParcalar değeri, kullanıcının girdiği arananKelime değerine eşit mi?

Eğer bu şart sağlanırsa (yani kelime bulunduysa);

1. kelimeBulunduMu değişkenini true yapıyoruz.
2. Kelimenin yerini tespit etmek için kelimePozisyonu değişkenini şu formülle

güncelliyoruz:

i - baslangicPozisyonu + 1

Sorgu bitiminde, döngünün sürekliliğini sağlamak için i değerini 1 artırıyoruz (i =
i + 1). Sonuç olarak; kelimeyi hangi pozisyonda bulduysak, o değer
fonksiyonumuzun dönüş değeri (Return Value) olacaktır.

Böylece kelimeAra fonksiyonunu tamamlamış olduk. Şimdi ana fonksiyonumuza
(Main) geri dönelim ve kaldığımız yerden, yani fonksiyonu çağırdığımız satırın
altından devam ederek programı nihayete erdirelim.

Flowgorithm Uygulaması ile Algoritma Geliştirme

178

	

Şekil 8-69 Ana fonksiyon 4. kısım

Arama işleminin sonucunu değerlendirmek için bir if kontrol bloğu (Şekil 8-69)
açıyor ve şart olarak kelimePozisyonu > 0 ifadesini ekliyoruz.

Mantığımız şu: Fonksiyonumuz kelimeyi bulduğunda 0'dan büyük bir değer
döndürmektedir. Dolayısıyla kelimePozisyonunun 0'dan büyük olması, aranan
kelimenin o satırda bulunduğu anlamına gelir.

Şartın sağlandığı (kelimenin bulunduğu) durumda şu işlemleri yapıyoruz:

1. Kullanıcıya, aranan kelimenin ne olduğu ve hangi satırda bulunduğu
bilgisini ekrana yazdırıyoruz.

2. Toplam bulunan kelime sayısını tutmak için bulunanSayisi değişkenini 1
artırıyoruz.

3. Son olarak; bir sonraki satırda hatalı işlem yapmamak adına
kelimePozisyonu değerini tekrar 0 olarak sıfırlıyoruz.

Flowgorithm Uygulaması ile Algoritma Geliştirme 179

	

Şekil 8-70 Ana fonksiyon 5. kısım

Döngü sona erdiğinde, bulunanSayisi değişkeninin değerini Şekil 8-70’de
görüldüğü üzere kontrol etmemiz gerekir. Eğer bu değer hâlâ 0 ise, aranan kelime
belgemizde hiç geçmiyor demektir.

Bu durumu yönetmek için son bir if bloğu ekliyoruz:

• Eğer bulunanSayisi == 0 ise: Kullanıcıya, aranan kelimenin belgede
bulunamadığına dair bir mesaj veriyoruz.

• Eğer 0'dan farklı ise: (Yani kelime en az bir kez bulunduysa), kullanıcıya
'Arama işlemi tamamlandı' mesajını iletiyoruz.

Bu son adımla birlikte programımız görevini başarıyla tamamlamış oluyor.

Program çalıştırıldığında, konsol ekranı Şekil 8-71 gibi görünecektir.

Flowgorithm Uygulaması ile Algoritma Geliştirme

180

	

Şekil 8-71 Programın çıktısı

8.2.9 Verilen	programın	Python		Çıktısı

def kelimeAra(baslangicPozisyonu, arananBelge, arananKelime):
 kelimePozisyonu = 0
 i = baslangicPozisyonu
 kelimeBulunduMu = False
 while i <= len(arananBelge) - len(arananKelime) + 1 and kelimeBulunduMu ==
False:
 alinanParcalar = parcaAl(arananBelge, i, len(arananKelime))
 if alinanParcalar == arananKelime:
 kelimeBulunduMu = True
 kelimePozisyonu = i - baslangicPozisyonu + 1
 i = i + 1
 else:
 i = i + 1

 return kelimePozisyonu

def parcaAl(arananBelge, baslangicPozisyonu, miktar):
 i = 0
 sonucDizisi = ""
 sayac = 0
 if miktar > 0:
 while i <= len(arananBelge) - 1 and sayac < miktar:
 if i >= baslangicPozisyonu - 1:
 sonucDizisi = sonucDizisi + arananBelge[i]
 sayac = sayac + 1
 i = i + 1

Flowgorithm Uygulaması ile Algoritma Geliştirme 181

 else:
 while i <= len(arananBelge) - 1:
 if i >= baslangicPozisyonu - 1:
 sonucDizisi = sonucDizisi + arananBelge[i]
 sayac = sayac + 1
 i = i + 1
 arananBelge = sonucDizisi

 return arananBelge

Main
kelimePozisyonu = 0
satirNumarasi = 0
bulunanSayisi = 0
infile = open("C:/Users/admin/Desktop/meyveler.txt")
nextLine = infile.readline()
print("Aramak istediğiniz metni girin:")
print("Örnek: 'Elma' ya da 'Vişne'")
arananKelime = input()
while not nextLine == '':
 arananBelge = nextLine
 nextLine = infile.readline()
 satirNumarasi = satirNumarasi + 1
 kelimePozisyonu = kelimeAra(1, arananBelge, arananKelime)
 if kelimePozisyonu > 0:
 print("Aranan kelime olan " + arananKelime + "," + str(satirNumarasi) + ". satırda
bulundu")
 bulunanSayisi = bulunanSayisi + 1
 kelimePozisyonu = 0
if bulunanSayisi == 0:
 print("Aranan metin bulunamadı!")
else:
 print("Arama tamamlandı")
infile.close()

Flowgorithm dosyasına ulaşmak için
karekodu okutunuz.

9 Kaynakça	
Wing, J. (2006). Computational Thinking. Communications of the ACM, 49(3), 33-

35. https://doi.org/10.1145/1118178.1118215

Akgün, F. (2020). Öğretmen Adaylarının Bilgi ve İletişim Teknolojileri Yeterlilikleri ve Bilgi İşlemsel Düşünme
Becerilerinin Çeşitli Değişkenler Açısından Değerlendirilmesi. Trakya Üniversitesi Sosyal Bilimler Dergisi, s.
629-654.

Attila, A. Ş. (2025). Uygulamalı Örneklerle Yapay Zekâ Algoritmaları ve Programlama. 2. Baskı. Ankara: Seçkin
Yayıncılık.

Atzori, R. (2022). Flowchart
Shapes. Flowgorithm: https://www.flowgorithm.altervista.org/HTML%20ENG/index.html?computer.htmladre
sinden alındı

Aydoğdu, Ş. (2020). Algoritma ve Programlama. Pegem Akademi Yayncılık.

Balay, M., Timuçin, E. T., Çağlar, E., & Şentürk, A. (2006). Bilgi teknolojileri 2. Bursa: Ekin Yayınevi.

Eryılmaz, S. (2019). Algoritma tasarımı ve geliştirme: Java ve C# programlama dili örnekleri. Ankara: Nobel
Akademik Yayıncılık.

Levitin, A. (2003). Introduction to the Design and Analysis of Algorithms. Addıson-Wesley.

Papert, S. (1980). Mindstorms: Children, Computers, And Powerful Ideas. New York:Basic Books, Inc.,
Publishers.

Sarıkaya, D. A. (2019, 8 2). Programlama Öğretiminin Bilgi İşlemsel Düşünme Becerisine Etkisi. Türkiye Sosyal
Araştırma Dergisi, s. 575-590.

Şefik, Ö., & Urhan, S. (2023). Matematik Eğitiminde Algoritma Tasarımı ve Python Programlamaya Giriş. Pegem
Akademi Yayıncılık.

Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing computational thinking: A systematic review
of empirical studies. Computers & Education, 148.

Tungut, H. B. (2019). Algoritma ve programlama mantığı. İstanbul: Kodlab Yayınları.

Üzümcü, Ö. (2018). Eğitimde Yeni 21. Yüzyıl Becerisi: Bilgi İşlemsel Düşünme. Uluslararası Türk Kültür
Coğrafyasında Sosyal Bilimler Dergisi, 3(2), 1-16.

Vatansever, F. (2017). Algoritma geliştirme ve programlamaya giriş. Ankara: Seçkin Yayıncılık.

https://doi.org/10.1145/1118178.1118215

Kısa Özgeçmiş

Ömer Uysal, Bursa Uludağ Üniversitesi Eğitim Fakültesi Bilgisayar
ve Öğretim Teknolojileri Eğitimi Bölümünde görev yapan bir
akademisyendir. Son yıllarda özellikle yapay zekâ, proje tabanlı
öğrenme, dijital oyun tabanlı öğrenme, etkileşimli materyal tasarımı
konusunda akademik araştırmalar yapmakta; algoritma tasarımı ve
geliştirme dersini vermektedir.

Gürkan Güreşci, Bursa Uludağ Üniversitesi Eğitim Fakültesi
Bilgisayar ve Öğretim Teknolojileri Eğitimi Bölümünde tezli yüksek
lisans yapmakta ve Sakarya Karasu Gazi Ortaokulunda matematik
öğretmeni olarak görev yapmaktadır. Algoritma geliştirme, dijital
oyun tabanlı öğrenme üzerine araştırmalar yapmaktadır.

